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The traditional approach to investigation and management of aortic 

dissections has revolved around clinical examination, laboratory 

tests and a slew of imaging modalities including CT, chest X-ray, MRI, 

ultrasound and transoesophageal echocardiography.1

However, an inherent limitation of these techniques is that they do not 

consider the temporal dynamicity of aortic blood blow; they capture 

only a snapshot of the blood flow at single points in time. 

Recent research has highlighted the use of computational fluid 

dynamics (CFD) as a complementary tool to improve our limited 

understanding of the complex biomechanical behaviour of blood flow 

in both normal aortas and those with pathology. 

The potential application of CFD is widespread, spanning from 

technological development of new devices to routine clinical  

decision-making.2,3

The amalgamation of engineering and medical disciplines has allowed 

computer simulation to be used to solve numerical equations related 

to fluid flow. Since CFD’s inception in the 1950s by researchers from 

the Massachusetts Institute of Technology,4 several studies have 

attempted to employ CFD techniques to analyse blood flow in different 

aortic pathologies including aortic aneurysms,5–7 aortic dissections5,8–12 

and differences before and after endovascular aortic repair (EVAR).13

A combination of technological advancements in computing software 

(ANSYS FLUENT,14 Open Foam,15 SIMVascular,16 ADINA,17 in-house 

coding18 and the falling cost of supercomputing have paved the way 

for the use of computing resources to solve mathematical equations 

in medicine. The Navier–Stokes equation, for instance, allows modelling 

of intravascular pressure and flow parameters. The use of appropriately 

framed model parameters gives a realistic picture of blood flow and 

pressure waveforms in real time, enabling the investigation of blood 

flow velocity in relation to pressure and density as well as a myriad of 

other stresses and forces, including ones that cannot be measured, 

such as wall shear stress (WSS). 

Haemodynamics is considered to play a paramount role in the 

development and progression of all types of aortic dissection aortic 

dissection but unfortunately remains poorly understood. Hitherto, 

no clinical consensus has been established as to whether medical, 

surgical or endovascular treatment is most appropriate for the 

management of aortic dissection. This has plausibly been attributed 

to the lack of an imaging criteria to determine the best treatment for 

individual patients. Therefore, there is burgeoning interest in the use of 

patient-specific CFD in clinical decision-making. 

This review aims to provide an overview of the benefits and challenges 

of CFD in the management of aortic dissections. 

Haemodynamic Changes in True and  
False Lumens
Imaging techniques such as CT angiography and MRI have allowed 

clinicians to accurately visualise the vasculature, which can then 

be reconstructed by employing various software packages such as 
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Materialise Mimics (Materialise NV) and 3D Slicer (open source). When 

these are used with a suitable meshing algorithm, CFD software can be 

applied to the vascular geometry to run simulation tests, along with 4D 

flow MRI and other imaging modalities such as 2D PC-MRI to provide 

realistic boundary parameters.19 It is important to select the correct 

boundary condition for CFD models as this will improve CFD outcome 

as highlighted in the literature.20-22 As stated in a recent publication,23 it 

is important to consider the peripheral vascular network as a boundary 

condition, and model it through different elements of Windkessel 

Model. This will ensure a comprehensive analysis of blood flow 

dynamics, which should be useful in the future. 

CFD could be employed to investigate haemodynamic changes in both 

the true lumen (TL) and false lumen (FL), where geometrical changes as 

a result of the dissection may change the entire flow field significantly. 

This may provide clues on when to treat an uncomplicated type B 

dissection. It remains a challenge to identify patients who are at 

the greatest risk of developing aneurysmal changes and should be 

given priority for treatment. This could be attributed to the unique 

geometrical features of the true and false lumen in every patient, 

which means that changes in the haemodynamic field vary between 

individuals. Karmonik et al. demonstrated that occlusion of the exit 

tear can cause an increase in FL pressure, since the geometry is 

altered after the occlusion. In addition, several studies have showed 

FL dilation causes a reduction in pressure within the FL.24 However, 

some studies have demonstrated that pressure in the TL is generally 

higher than in the FL. Recent publications with state-of-the-art CFD 

models have shown that the pressure difference between the TL and 

the FL is strongly affected by the distensibility of the aortic wall,25, 26 

which should be given consideration when modelling the pressure in 

aortic dissection.  

Cheng et al. showed that altered flow patterns in FL and TL may 

affect disease progression, and this is best explained by changes 

in wall shear stress (WSS). WSS exerted on the cell surface causes 

morphological deformation of the cells in the direction of blood flow, 

triggering rapid cytoskeletal remodelling and activating signalling 

cascades with the consequent acute release of nitric oxide and 

prostacylin followed by activation of transcription factors including 

NF-κB, c-fos, c-jun and SP-1.27  

Low WSS is also associated with endothelial dysfunction, reduced 

nitric oxide production, increased oxidative stress, atheroma/

neointima formation and a propensity for vasoconstriction rather than 

vasodilatation.28 In contrast, high and moderate WSS is associated 

with good endothelial function, reduced expression of adhesion 

molecules, increased expression of endothelial nitric oxide synthase 

and reduction in oxidative stress.29,30 However, the threshold for low 

and high WSS appears controversial, and varies between studies. While 

Cheng et al. showed that WSS can go up to 17.98 Pa in the true lumen,31 

Karmonik et al. showed that maximum WSS can decrease from 0.9 to 

0.4Pa,32 and low WSS was determined to be less than 0.4 Pa. However, 

the authors believe that WSS can be geometry dependent, and might 

serve as an invaluable marker of vessel wall health, and thus, may help 

surgeons to prioritise patients for treatment. 

Haemodynamics of Exit and Re-entry Tears
Wan Ab Naim and colleagues showed that a re-entry tear can provide 

a return path for blood flow back to the TL during systole and an 

extra outflow path into the FL during diastole, which may alter the 

progression of a dissected aorta.33 A high velocity profile located at the 

entry tear may result in high WSS. On the one hand, high time-averaged 

WSS (TAWSS) values have been found8,34 to increase the progression of 

the entry tear. Elevated WSS depends on the site of entry. On the other, 

a reduction in shear stress can minimise the propagation of dissection. 

However, because each patient has a unique anatomical structure, 

there is a large range of WSS values across various types of tears. For 

example, the TAWSS exceeded 5 Pa in a study by Alimohammadi et al.8 

but twice this value was given (10 Pa) in a study by Karmonik et al.

Haemodynamic Differences Before and  
After Endovascular Aortic Repair
Improvements in haemodynamic patterns within the aorta are expected 

after endovascular aortic aneurysm repair but this varies from patient to 

patient depending on the specific pathology and boundary conditions. 

Unfortunately, some patients develop thrombosis in the false lumen 

after EVAR, and this is postulated to be due to haemodynamic 

factors. Menichini et al., for instance,35 showed how turbulent flow 

in the aorta may promote thrombus formation in the FL, particularly 

following thoracic endovascular aneurysm repair (TEVAR). In addition, 

Wan Ab Naim et al. demonstrated that geometrical factors such as a 

re-entry tear and abdominal branches may cause the development 

of complete and incomplete FL thrombosis after stent graft repair.36 

These studies show that haemodynamic changes should be monitored 

closely to assess the risk of thrombus formation in the FL. The use 

of computational flow dynamics may accurately provide crucial 

information about WSS and change in velocity patterns, allowing 

clinicians to assess the risk of thrombus formation in every patient. 

Stent Design
In addition, CFD offers a platform for stent design optimisation, with 

the primary aim of reducing the haemodynamic impact (reduced 

sscillatory shear index, renal replacement therapy and TAWSS) of 

the stent on the vessel. Simulation tests allow for assessment of the 

stent’s mechanical and hemodynamic parameters that influence its 

performance. Strut thickness, for instance, has been found to be an 

important factor in predicting a stent’s performance.37–39 

A benefit of CFD is it makes it possible to accurately analyse the 

myriad of factors that cause potentially devastating stent-related 

complications, including malpositioning, neointimal hyperplasia and 

collapse.40,41 Vascular surgeons are then able to identify patients  

at high risk of such complications, and can decide to implement 

prophylactic interventions. 

Clinical Integration of Computational  
Flow Dynamics
CFD may prove to be an invaluable tool across the different stages of 

clinical management for patients who present with aortic dissection. 

However, much needs to be done to integrate CFD in virtual treatment 

planning and patient-specific risk prediction. Ideally, there should be 

smooth integration of a patients’ vasculature (cardiovascular imaging) 

with patients’ clinical data (baseline characteristics) before running a 

CFD simulation. However, once this has been attained, surgeons would 

have a comprehensive understanding of the condition they are dealing 

with, and can decide on the optimal treatment option. 

Research wise, this may also represent a paradigm shift from population-

based data to digital patient representations,42,43 the former of which 
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is severely limited because it requires large participant numbers 

and clinical trials to establish evidence. Instead, the combination of 

(Bayesian) machine-learning methods and CFD virtual data would enable 

continuous predictions of outcomes, thereby reducing the cost, time 

and resources associated with large-scale clinical trials. However, data 

are insufficient at present to establish a multidimensional database for 

machine-learning methods to be conducted appropriately.44

Limitations
The benefits of CFD must be viewed in the context of known limitations. 

First, the sample sizes in published studies are small, given that most 

analyse a cohort of fewer than 30 patients. Ideally, a large cohort of 

patients should be recruited with long-term follow-up (1 year), to 

establish the association between progression of a dissected aorta 

and haemodynamic factors such as disturbed flow and elevated WSS.

Secondly, the CFD technique itself is limited by its failure to consider 

biochemical interactions, although this is understandable because it 

was first used to model kinetics.45 Therefore, CFD should never be used 

in isolation and improvements are warranted in terms of setting the 

boundary conditions. 

Finally, CFD can never be entirely accurate in modelling the actual aortic 

environment, including pulsatile blood flow and vascular structure. 

Moreover, simulations may not be that specific to the individual  

patient given the continuous physiological fluctuations, which are 

affected by a host of factors such as lifestyle, medication or genetic 

predisposition. Integration of patient-specific data is lacking and  

should be addressed. 

Conclusion
The adoption of CFD modelling is a new era in vascular surgery. While 

potentially highly useful in the diagnosis, prediction and prognostication 

of aortic dissections, the application remains in its infancy. Addressing 

methodological and logistical challenges are paramount before 

implementation into clinical practice. n
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