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ABSTRACT  

Background: Artificial intelligence (AI) is rapidly advancing in vascular surgery, with applications in operative planning and navigation. 

AI-based systems may enhance preoperative mapping, intraoperative guidance, and autonomous device control, potentially improving 

procedural precision and patient outcomes. 

Objectives: To systematically review current evidence on AI-enabled operative planning and navigation in vascular surgery, assess 

technology readiness, and identify future research priorities. 

Methods: A systematic search of PubMed, IEEE Xplore, and arXiv (to June 2025) identified studies evaluating AI in planning or 

navigation during vascular or endovascular interventions. Eligible studies included deep learning, machine learning, or reinforcement 

learning approaches validated in simulation, phantom, or clinical environments. Data were synthesized narratively and grouped into 

planning/augmented guidance versus autonomous navigation systems. 

Results: Twenty-four studies met inclusion. AI-augmented planning tools, particularly deep learning–based overlays for endovascular 

aneurysm repair (EVAR), demonstrated reductions in fluoroscopy time, contrast use, and radiation exposure in early clinical studies. 

Autonomous navigation systems using reinforcement learning achieved >95% success in simulated catheter and guidewire navigation 

but lacked patient-level validation. Technology readiness levels remain low (TRL≈3 for autonomous navigation). 

Conclusions: AI in operative planning shows promising clinical translation, especially in EVAR, while autonomous navigation is largely 

experimental. Future research should focus on multicentre validation, semi-autonomous human–machine collaboration, and 

regulatory/ethical frameworks to ensure safe integration into clinical workflows.  

KEYWORDS: Artificial intelligence; Vascular surgery; Endovascular navigation; Operative planning; Reinforcement learning; 

Deep learning; Endovascular aneurysm repair (EVAR); Surgical augmented intelligence; Autonomous catheter navigation; 

Hybrid operating room. 
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INTRODUCTION  

Artificial intelligence (AI) has become a transformative force across several surgical specialties, 

offering new tools to improve accuracy, efficiency, and patient outcomes. In the field of vascular 

surgery, the complexity of endovascular interventions—such as endovascular aneurysm repair 

(EVAR), thoracic endovascular aortic repair (TEVAR), and complex peripheral revascularizations— 
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demands precise operative planning and real-time intraoperative navigation. Traditionally, these 

procedures rely on expertise of the surgeon supported by fluoroscopy, intravascular ultrasound, and 

fusion imaging; however, these methods remain limited by operator dependency, radiation exposure, 

and contrast-related risks. 

Recent advancements in AI, including machine learning (ML), deep learning (DL), and reinforcement 

learning (RL), present opportunities to address these limitations. AI-augmented planning systems can 

analyze preoperative imaging to automatically identify optimal landing zones, predict stent-graft 

configurations, and generate fusion overlays for hybrid operating rooms. Early clinical studies suggest 

that such tools may reduce operative time and radiation exposure while maintaining procedural 

accuracy [1,5,6]. 

Parallel developments in autonomous navigation—driven largely by RL—seek to enable semi- or fully 

autonomous guidewire and catheter control. Simulation-based studies have demonstrated that RL 

agents can learn complex navigation strategies within vascular phantoms and digital twins, achieving 

success rates exceeding 95% in target vessel cannulation [2,7–10]. While these systems remain 

experimental, they illustrate the potential for AI to assist or even automate technically demanding 

aspects of endovascular procedures. 

Despite rapid progress, challenges remain in translating these technologies to clinical practice. Most 

AI models are trained on limited datasets, lack external validation, and have not been evaluated for 

safety and robustness in live patient settings. Furthermore, regulatory and ethical frameworks for AI-

driven intraoperative decision-making are still evolving. 

This systematic review aims to synthesize current evidence on AI-enabled operative planning and 

navigation in vascular surgery. We examine the maturity and performance of augmented planning tools 

and autonomous navigation systems, highlight their clinical implications, and identify critical gaps that 

must be addressed to facilitate safe and effective integration into surgical workflows. 

METHODS 

2.1 Search Strategy 

We searched PubMed, IEEE Xplore, and arXiv/databases up to June 2025 using terms such as "reinforcement learning 

guidewire vascular", "AI planning EVAR", "autonomous catheter navigation", and "image-guided endovascular AI". 

2.2 Inclusion and Exclusion Criteria 

Included studies must investigate AI-supported intraoperative navigation or operative planning specifically in vascular or 

endovascular procedures. Excluded were purely diagnostic AI applications or studies unrelated to vascular intervention 

planning or guidance. 

2.3 Data Extraction and Risk-of-Bias Assessment 

Data were extracted on study design, AI modality (e.g. RL, DL), validation environment (simulation, phantom, clinical), 

outcomes (e.g. success rate, fluoroscopy time), and limitations. Risk-of-bias was assessed using adapted QUADAS-2 

metrics where applicable. 

2.4 Synthesis 

Studies were grouped into two domains: planning/augmented guidance, and autonomous navigation systems. Findings 

were synthesized narratively, with emphasis on outcomes, validation methods, and technology readiness. 
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RESULTS 

Study Selection 

The initial search yielded 462 records. After removal of duplicates and screening by title and abstract, 54 studies underwent 

full-text review. Of these, 24 studies met the inclusion criteria: 10 evaluated AI-augmented operative planning and 

intraoperative guidance, while 14 focused on autonomous navigation systems using reinforcement learning or similar 

approaches (figure 1). 

Study Characteristics 

 Designs: 7 simulation-only studies, 4 phantom-based validations, and 5 early clinical studies. 

 AI modalities: Deep learning for image segmentation and planning (n=8), reinforcement learning for autonomous 

navigation (n=10), and hybrid AI models (n=6). 

 Procedures targeted: Endovascular aneurysm repair (EVAR) (n=9), thoracic endovascular aortic repair (TEVAR) 

(n=2), peripheral revascularization (n=3), and generalized catheter navigation tasks (n=10). 

1. AI-Augmented Planning and Guidance 

Most planning tools focused on preoperative image analysis and intraoperative overlays: 

 Segmentation and planning: Deep learning–based models automatically segmented aortic anatomy and suggested 

optimal stent-graft configurations [11,12,18]. These models demonstrated >90% Dice similarity coefficients 

compared with expert annotations, with potential to reduce planning time by 40%. 

 Fusion overlays: Li et al. [1] developed an AI tool that generated real-time overlays during EVAR, reducing 

fluoroscopy duration by 20% and contrast volume by 15% in a prospective cohort. 

 Workflow integration: Dossabhoy et al. [5] described AI-enhanced hybrid operating room workflows, using deep 

learning to stabilize fluoroscopic imaging and predict device positioning (table 1). 

 Simulation-based optimization: Perrin et al. [14] and Thompson et al. [30] modeled stent-graft deployment and 

analyzed cost-benefit scenarios, predicting potential hospital savings of up to 12% with AI-enhanced planning. 

2. Autonomous Navigation Systems 

Reinforcement learning (RL) dominated this category, with most studies conducted in simulated vascular phantoms or 

digital twins: 

 Guidewire navigation: Scarponi et al. [7] introduced a zero-shot RL model capable of navigating unseen vascular 

anatomies with 95% success and minimal training data. 

 Branch cannulation: Liu et al. [8] developed an image-guided RL agent for robotic guidewire navigation, 

achieving 100% cannulation success and 30% shorter path lengths compared to heuristic methods. 

 Dual-device navigation: Robertshaw et al. [9] proposed a two-device RL system for cerebral thrombectomy, 

incorporating safety-constrained reward functions to reduce simulated vessel wall contact by 28%. 

 Microrobot control: Yang et al. [10] used hierarchical deep RL to control magnetic microrobots for 3D navigation 

in small vessels, demonstrating stable trajectories under variable flow conditions (table 2). 

 Learning from demonstration: Some studies combined RL with surgeon-provided demonstrations, improving 

sample efficiency by 40% [2,7]. 

No autonomous navigation systems had progressed beyond preclinical validation. 

Technology Readiness and Validation 

 AI-augmented planning tools: TRL 5–6 (validated in early clinical environments). 

 Autonomous navigation systems: TRL 2–3 (validated only in simulation or phantom studies). 

 Few studies (n=3) conducted external validation or sensitivity analyses, and none reported randomized controlled 

trial (RCT) data. 

Risk of Bias 
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Most studies were at high risk of bias due to small sample sizes, limited external datasets, and incomplete reporting of 

validation methods. Only five studies explicitly followed standardized AI reporting guidelines (e.g., CONSORT-AI or 

STARD-AI). 

Table 1. Characteristics of Included Studies (n = 24) 

Characteristic Subcategory/Details Number of 

Studies 

Key Observations 

Type of AI 

application 

AI-augmented planning 10 Focused on segmentation, device sizing, 

and fusion overlays for EVAR/TEVAR.  
Autonomous navigation 14 Primarily reinforcement learning (RL) 

for guidewire/catheter navigation. 

Validation 

environment 

Simulation only 7 Used digital twins or virtual vascular 

models without physical components.  
Phantom-based validation 4 Used 3D-printed or silicone vascular 

phantoms.  
Early clinical studies 5 AI-assisted EVAR/TEVAR showed 

workflow and radiation efficiency gains. 

Targeted 

procedures 

EVAR 9 Majority of AI-augmented planning 

studies focused on aneurysm repair.  
TEVAR 2 Mainly explored stent-graft planning and 

device positioning.  
Peripheral revascularization 3 AI-assisted guidewire navigation in iliac 

and femoropopliteal segments.  
Generalized catheter navigation 10 RL agents trained to navigate diverse 

vascular anatomies. 

Study design Prospective/retrospective clinical 3 Small cohorts (10–50 patients) with 

nonrandomized designs.  
Preclinical/experimental 21 Dominated by computer science and 

engineering-driven approaches. 

Performance 

metrics reported 

Anatomical accuracy, success 

rate, procedure time 

24 Lack of standardized outcome reporting 

across studies. 

 

Table 2. Performance of AI-Augmented Planning Tools 

Application AI 

Approach 

Validation Setting Key Outcomes Clinical 

Readiness 

Reference 

Examples 

Anatomical 

segmentation 

Deep 

learning 

Retrospective 

CT/MR 

>90% Dice coefficient; 

reduced planning time by 

40%. 

Emerging 

(TRL 5) 

[11,12,18] 

Stent-graft 

configuration 

Machine 

learning 

Simulation/phantom Automated device 

selection matching 

experts in 92–95%. 

Emerging 

(TRL 4) 

[5,14,30] 

Fusion overlays 

(EVAR) 

Deep 

learning 

Early clinical Fluoroscopy ↓ 20%; 

contrast ↓ 15%; no 

compromise in accuracy. 

Near-clinical 

(TRL 6) 

[1,5] 

Image 

stabilization 

Deep 

learning 

Phantom/clinical Reduced intraoperative 

device repositioning by 

18%. 

Emerging 

(TRL 5) 

[5] 

Cost-

effectiveness 

modeling 

Hybrid AI 

models 

Simulation Predicted hospital 

savings up to 12% per 

EVAR case. 

Conceptual 

(TRL 3) 

[14,30] 

 

Table 3. Performance of Autonomous Navigation Systems 
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Navigation Task AI Approach Validation 

Setting 

Success Rate / Key 

Findings 

Technical 

Challenges 

Identified 

Reference 

Examples 

Guidewire 

navigation 

Zero-shot RL Simulation 95% success in 

navigating unseen 

anatomies. 

Lack of real-time 

imaging integration. 

[7] 

Branch 

cannulation 

Image-guided 

RL 

Phantom 100% success; path 

length ↓ 30% vs 

heuristic methods. 

Limited 

generalization to 

tortuous vessels. 

[8] 

Dual-device 

navigation 

Safety-

constrained 

RL 

Simulation Vessel wall contact ↓ 

28%; improved safety 

profiles. 

Complexity of 

multidevice 

coordination. 

[9] 

Microrobot 

control 

Hierarchical 

deep RL 

Phantom Stable 3D navigation in 

sub-millimeter vessels. 

Magnetic field 

precision 

requirements. 

[10] 

Learning from 

demonstration 

RL + human 

feedback 

Simulation 40% improvement in 

sample efficiency for 

training models. 

Requires high-

quality annotated 

data. 

[2,7] 

 

Figure 1: PRISMA flow chart 
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DISCUSSION 

This systematic review highlights the rapid but uneven evolution of artificial intelligence (AI) in vascular surgery, with 

significant advances in operative planning and early exploration of autonomous navigation. While AI-augmented planning 

tools are nearing clinical utility, fully autonomous navigation remains experimental and faces substantial translational 

barriers. 

1. Clinical Potential of AI-Augmented Planning 

Deep learning–based planning systems demonstrated promising performance in automating anatomical segmentation, 

stent-graft sizing, and generation of intraoperative overlays. Early clinical studies suggested meaningful reductions in 

fluoroscopy time, contrast volume, and procedure duration, aligning with prior evidence that advanced imaging integration 

improves outcomes in endovascular procedures [1,5,11]. These benefits, if validated in larger multicentre trials, could 

reduce procedural variability and standardize best practices across operators (table 3). However, most planning tools lacked 

robust external validation and were trained on single-institution datasets, raising concerns about generalizability. 

2. Autonomous Navigation: Promise and Limitations 

Reinforcement learning (RL) approaches achieved near-perfect navigation success rates in simulation and phantom studies 

[7–10]. These findings illustrate the feasibility of AI agents learning complex navigation strategies in anatomically diverse 

models. However, translation to clinical practice is hindered by: 

 Absence of real-time imaging integration with fluoroscopy or intravascular ultrasound; 

 Challenges in ensuring safety and interpretability of RL agents; 

 Lack of regulatory and ethical frameworks for autonomous intraoperative control. 

Semi-autonomous systems, where AI assists rather than replaces the operator, may represent a more realistic intermediate 

step. Approaches such as learning-from-demonstration and safety-constrained RL could facilitate adoption while 

maintaining human oversight [2,7,9]. 

3. Barriers to Clinical Implementation 

Several systemic challenges emerged: 

 Data scarcity: High-quality annotated datasets for vascular navigation are limited, and proprietary device 

differences complicate model generalization. 

 Validation gaps: Few studies conducted external validation, and none performed prospective randomized trials. 

 Integration challenges: Real-time AI deployment requires hybrid operating rooms equipped with advanced 

computing capabilities and standardized imaging protocols. 

 Regulatory uncertainty: Clear pathways for FDA or CE approval of AI-driven intraoperative tools are still under 

development, particularly for autonomous systems. 

4. Ethical and Legal Considerations 

AI-driven decision-making raises questions about liability, patient consent, and transparency. Trustworthy AI in surgery 

must prioritize explainability and ensure that human operators remain accountable for clinical decisions [20,27]. 

FUTURE DICISION  

To advance AI-guided vascular interventions, future research should prioritize: 

1. Large-scale multicentre datasets to improve model robustness; 

2. Hybrid intelligence systems that combine human expertise with AI guidance; 

3. Prospective clinical trials evaluating workflow efficiency, patient outcomes, and cost-effectiveness; 

4. Standardized reporting frameworks (e.g., CONSORT-AI, STARD-AI) to improve reproducibility; 

5. Collaborative regulatory models addressing safety, ethics, and legal accountability. 
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CONCLUSION  
Artificial intelligence is emerging as a valuable tool in vascular surgery, particularly for operative planning and 

intraoperative guidance. Deep learning–based planning systems demonstrate promising reductions in fluoroscopy time, 

contrast use, and procedural variability, suggesting early clinical utility. In contrast, autonomous navigation using 

reinforcement learning remains largely experimental, with successes limited to simulations and phantom models. 

Translational barriers, including data scarcity, lack of external validation, and regulatory uncertainty, must be addressed 

before widespread adoption. Semi-autonomous systems that support, rather than replace, surgeons may offer a more 

practical path toward clinical integration. Future research should prioritize multicentre validation, standardized reporting, 

and human–machine collaboration frameworks to ensure safety and effectiveness. Overall, AI holds significant potential 

to enhance precision and outcomes in vascular interventions but requires careful, evidence-based implementation. 
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