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ABSTRACT

Background: Artificial intelligence (Al) is rapidly advancing in vascular surgery, with applications in operative planning and navigation.
Al-based systems may enhance preoperative mapping, intraoperative guidance, and autonomous device control, potentially improving
procedural precision and patient outcomes.

Objectives: To systematically review current evidence on Al-enabled operative planning and navigation in vascular surgery, assess
technology readiness, and identify future research priorities.

Methods: A systematic search of PubMed, IEEE Xplore, and arXiv (to June 2025) identified studies evaluating Al in planning or
navigation during vascular or endovascular interventions. Eligible studies included deep learning, machine learning, or reinforcement
learning approaches validated in simulation, phantom, or clinical environments. Data were synthesized narratively and grouped into
planning/augmented guidance versus autonomous navigation systems.

Results: Twenty-four studies met inclusion. Al-augmented planning tools, particularly deep learning—based overlays for endovascular
aneurysm repair (EVAR), demonstrated reductions in fluoroscopy time, contrast use, and radiation exposure in early clinical studies.
Autonomous navigation systems using reinforcement learning achieved >95% success in simulated catheter and guidewire navigation
but lacked patient-level validation. Technology readiness levels remain low (TRL=3 for autonomous navigation).

Conclusions: Al in operative planning shows promising clinical translation, especially in EVAR, while autonomous navigation is largely
experimental. Future research should focus on multicentre validation, semi-autonomous human—machine collaboration, and
regulatory/ethical frameworks to ensure safe integration into clinical workflows.
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INTRODUCTION

Acrtificial intelligence (Al) has become a transformative force across several surgical specialties,
offering new tools to improve accuracy, efficiency, and patient outcomes. In the field of vascular
surgery, the complexity of endovascular interventions—such as endovascular aneurysm repair
(EVAR), thoracic endovascular aortic repair (TEVAR), and complex peripheral revascularizations—
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demands precise operative planning and real-time intraoperative navigation. Traditionally, these
procedures rely on expertise of the surgeon supported by fluoroscopy, intravascular ultrasound, and
fusion imaging; however, these methods remain limited by operator dependency, radiation exposure,
and contrast-related risks.

Recent advancements in Al, including machine learning (ML), deep learning (DL), and reinforcement
learning (RL), present opportunities to address these limitations. Al-augmented planning systems can
analyze preoperative imaging to automatically identify optimal landing zones, predict stent-graft
configurations, and generate fusion overlays for hybrid operating rooms. Early clinical studies suggest
that such tools may reduce operative time and radiation exposure while maintaining procedural
accuracy [1,5,6].

Parallel developments in autonomous navigation—driven largely by RL—seek to enable semi- or fully
autonomous guidewire and catheter control. Simulation-based studies have demonstrated that RL
agents can learn complex navigation strategies within vascular phantoms and digital twins, achieving
success rates exceeding 95% in target vessel cannulation [2,7-10]. While these systems remain
experimental, they illustrate the potential for Al to assist or even automate technically demanding
aspects of endovascular procedures.

Despite rapid progress, challenges remain in translating these technologies to clinical practice. Most
Al models are trained on limited datasets, lack external validation, and have not been evaluated for
safety and robustness in live patient settings. Furthermore, regulatory and ethical frameworks for Al-
driven intraoperative decision-making are still evolving.

This systematic review aims to synthesize current evidence on Al-enabled operative planning and
navigation in vascular surgery. We examine the maturity and performance of augmented planning tools
and autonomous navigation systems, highlight their clinical implications, and identify critical gaps that
must be addressed to facilitate safe and effective integration into surgical workflows.

METHODS

2.1 Search Strategy

We searched PubMed, IEEE Xplore, and arXiv/databases up to June 2025 using terms such as "reinforcement learning
guidewire vascular", "Al planning EVAR", "autonomous catheter navigation”, and "image-guided endovascular Al".

2.2 Inclusion and Exclusion Criteria

Included studies must investigate Al-supported intraoperative navigation or operative planning specifically in vascular or
endovascular procedures. Excluded were purely diagnostic Al applications or studies unrelated to vascular intervention
planning or guidance.

2.3 Data Extraction and Risk-of-Bias Assessment

Data were extracted on study design, Al modality (e.g. RL, DL), validation environment (simulation, phantom, clinical),
outcomes (e.g. success rate, fluoroscopy time), and limitations. Risk-of-bias was assessed using adapted QUADAS-2
metrics where applicable.

2.4 Synthesis

Studies were grouped into two domains: planning/augmented guidance, and autonomous navigation systems. Findings
were synthesized narratively, with emphasis on outcomes, validation methods, and technology readiness.
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RESULTS
Study Selection

The initial search yielded 462 records. After removal of duplicates and screening by title and abstract, 54 studies underwent
full-text review. Of these, 24 studies met the inclusion criteria; 10 evaluated Al-augmented operative planning and
intraoperative guidance, while 14 focused on autonomous navigation systems using reinforcement learning or similar
approaches (figure 1).

Study Characteristics

o Designs: 7 simulation-only studies, 4 phantom-based validations, and 5 early clinical studies.

o Al modalities: Deep learning for image segmentation and planning (n=8), reinforcement learning for autonomous
navigation (n=10), and hybrid Al models (n=6).

e  Procedures targeted: Endovascular aneurysm repair (EVAR) (n=9), thoracic endovascular aortic repair (TEVAR)
(n=2), peripheral revascularization (n=3), and generalized catheter navigation tasks (n=10).

1. Al-Augmented Planning and Guidance
Most planning tools focused on preoperative image analysis and intraoperative overlays:

e Segmentation and planning: Deep learning—based models automatically segmented aortic anatomy and suggested
optimal stent-graft configurations [11,12,18]. These models demonstrated >90% Dice similarity coefficients
compared with expert annotations, with potential to reduce planning time by 40%.

e Fusion overlays: Li et al. [1] developed an Al tool that generated real-time overlays during EVAR, reducing
fluoroscopy duration by 20% and contrast volume by 15% in a prospective cohort.

o  Workflow integration: Dossabhoy et al. [5] described Al-enhanced hybrid operating room workflows, using deep
learning to stabilize fluoroscopic imaging and predict device positioning (table 1).

e Simulation-based optimization: Perrin et al. [14] and Thompson et al. [30] modeled stent-graft deployment and
analyzed cost-benefit scenarios, predicting potential hospital savings of up to 12% with Al-enhanced planning.

2. Autonomous Navigation Systems

Reinforcement learning (RL) dominated this category, with most studies conducted in simulated vascular phantoms or
digital twins:

e  Guidewire navigation: Scarponi et al. [7] introduced a zero-shot RL model capable of navigating unseen vascular
anatomies with 95% success and minimal training data.

e Branch cannulation: Liu et al. [8] developed an image-guided RL agent for robotic guidewire navigation,
achieving 100% cannulation success and 30% shorter path lengths compared to heuristic methods.

e Dual-device navigation: Robertshaw et al. [9] proposed a two-device RL system for cerebral thrombectomy,
incorporating safety-constrained reward functions to reduce simulated vessel wall contact by 28%.

e Microrobot control: Yang et al. [10] used hierarchical deep RL to control magnetic microrobots for 3D navigation
in small vessels, demonstrating stable trajectories under variable flow conditions (table 2).

e Learning from demonstration: Some studies combined RL with surgeon-provided demonstrations, improving
sample efficiency by 40% [2,7].

No autonomous navigation systems had progressed beyond preclinical validation.
Technology Readiness and Validation
e  Al-augmented planning tools: TRL 5-6 (validated in early clinical environments).

e  Autonomous navigation systems: TRL 2-3 (validated only in simulation or phantom studies).

e Few studies (n=3) conducted external validation or sensitivity analyses, and none reported randomized controlled
trial (RCT) data.

Risk of Bias
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Most studies were at high risk of bias due to small sample sizes, limited external datasets, and incomplete reporting of
validation methods. Only five studies explicitly followed standardized Al reporting guidelines (e.g., CONSORT-AI or
STARD-AI).

Table 1. Characteristics of Included Studies (n = 24)

Characteristic Subcategory/Details Number of Key Observations
Studies
Type of Al | Al-augmented planning 10 Focused on segmentation, device sizing,
application and fusion overlays for EVAR/TEVAR.
Autonomous navigation 14 Primarily reinforcement learning (RL)
for guidewire/catheter navigation.
Validation Simulation only 7 Used digital twins or virtual vascular
environment models without physical components.
Phantom-based validation 4 Used 3D-printed or silicone vascular
phantoms.
Early clinical studies 5 Al-assisted EVAR/TEVAR showed
workflow and radiation efficiency gains.
Targeted EVAR 9 Majority of Al-augmented planning
procedures studies focused on aneurysm repair.
TEVAR 2 Mainly explored stent-graft planning and
device positioning.
Peripheral revascularization 3 Al-assisted guidewire navigation in iliac
and femoropopliteal segments.
Generalized catheter navigation 10 RL agents trained to navigate diverse
vascular anatomies.
Study design Prospective/retrospective clinical = 3 Small cohorts (10-50 patients) with
nonrandomized designs.
Preclinical/experimental 21 Dominated by computer science and
engineering-driven approaches.
Performance Anatomical accuracy, success @24 Lack of standardized outcome reporting

metrics reported rate, procedure time across studies.

Table 2. Performance of Al-Augmented Planning Tools

Application Al Validation Setting Key Outcomes Clinical Reference
Approach Readiness Examples

Anatomical Deep Retrospective >90% Dice coefficient; = Emerging [11,12,18]
segmentation learning CT/MR reduced planning time by | (TRL 5)

40%.
Stent-graft Machine Simulation/phantom = Automated device = Emerging [5,14,30]
configuration learning selection matching = (TRL 4)

experts in 92-95%.
Fusion overlays @ Deep Early clinical Fluoroscopy | 20%; Near-clinical @ [1,5]
(EVAR) learning contrast | 15%; mno  (TRL6)

compromise in accuracy.
Image Deep Phantom/clinical Reduced intraoperative = Emerging [5]
stabilization learning device repositioning by (TRL5)

18%.
Cost- Hybrid Al = Simulation Predicted hospital = Conceptual [14,30]
effectiveness models savings up to 12% per @ (TRL 3)
modeling EVAR case.

Table 3. Performance of Autonomous Navigation Systems
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Navigation Task = Al Approach  Validation Success Rate / Key @ Technical Reference
Setting Findings Challenges Examples
Identified
Guidewire Zero-shot RL = Simulation 95% success in | Lack of real-time | [7]
navigation navigating unseen  imaging integration.
anatomies.
Branch Image-guided = Phantom 100% success; path = Limited [8]
cannulation RL length | 30% vs @ generalization to
heuristic methods. tortuous vessels.
Dual-device Safety- Simulation Vessel wall contact | = Complexity of | [9]
navigation constrained 28%; improved safety = multidevice
RL profiles. coordination.
Microrobot Hierarchical Phantom Stable 3D navigation in = Magnetic field | [10]
control deep RL sub-millimeter vessels. | precision
requirements.
Learning from | RL + human @ Simulation 40% improvement in  Requires high- | [2,7]
demonstration feedback sample efficiency for quality annotated
training models. data.

Figure 1: PRISMA flow chart
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DISCUSSION

This systematic review highlights the rapid but uneven evolution of artificial intelligence (Al) in vascular surgery, with
significant advances in operative planning and early exploration of autonomous navigation. While Al-augmented planning
tools are nearing clinical utility, fully autonomous navigation remains experimental and faces substantial translational
barriers.

1. Clinical Potential of Al-Augmented Planning

Deep learning—based planning systems demonstrated promising performance in automating anatomical segmentation,
stent-graft sizing, and generation of intraoperative overlays. Early clinical studies suggested meaningful reductions in
fluoroscopy time, contrast volume, and procedure duration, aligning with prior evidence that advanced imaging integration
improves outcomes in endovascular procedures [1,5,11]. These benefits, if validated in larger multicentre trials, could
reduce procedural variability and standardize best practices across operators (table 3). However, most planning tools lacked
robust external validation and were trained on single-institution datasets, raising concerns about generalizability.

2. Autonomous Navigation: Promise and Limitations

Reinforcement learning (RL) approaches achieved near-perfect navigation success rates in simulation and phantom studies
[7-10]. These findings illustrate the feasibility of Al agents learning complex navigation strategies in anatomically diverse
models. However, translation to clinical practice is hindered by:

e  Absence of real-time imaging integration with fluoroscopy or intravascular ultrasound;
e Challenges in ensuring safety and interpretability of RL agents;
e Lack of regulatory and ethical frameworks for autonomous intraoperative control.

Semi-autonomous systems, where Al assists rather than replaces the operator, may represent a more realistic intermediate
step. Approaches such as learning-from-demonstration and safety-constrained RL could facilitate adoption while
maintaining human oversight [2,7,9].

3. Barriers to Clinical Implementation
Several systemic challenges emerged:

o Data scarcity: High-quality annotated datasets for vascular navigation are limited, and proprietary device
differences complicate model generalization.

e Validation gaps: Few studies conducted external validation, and none performed prospective randomized trials.

e Integration challenges: Real-time Al deployment requires hybrid operating rooms equipped with advanced
computing capabilities and standardized imaging protocols.

e Regulatory uncertainty: Clear pathways for FDA or CE approval of Al-driven intraoperative tools are still under
development, particularly for autonomous systems.

4. Ethical and Legal Considerations

Al-driven decision-making raises questions about liability, patient consent, and transparency. Trustworthy Al in surgery
must prioritize explainability and ensure that human operators remain accountable for clinical decisions [20,27].

FUTURE DICISION
To advance Al-guided vascular interventions, future research should prioritize:

Large-scale multicentre datasets to improve model robustness;

Hybrid intelligence systems that combine human expertise with Al guidance;

Prospective clinical trials evaluating workflow efficiency, patient outcomes, and cost-effectiveness;
Standardized reporting frameworks (e.g., CONSORT-AI, STARD-AI) to improve reproducibility;
Collaborative regulatory models addressing safety, ethics, and legal accountability.

agrwbdE
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CONCLUSION

Artificial intelligence is emerging as a valuable tool in vascular surgery, particularly for operative planning and
intraoperative guidance. Deep learning—based planning systems demonstrate promising reductions in fluoroscopy time,
contrast use, and procedural variability, suggesting early clinical utility. In contrast, autonomous navigation using
reinforcement learning remains largely experimental, with successes limited to simulations and phantom models.
Translational barriers, including data scarcity, lack of external validation, and regulatory uncertainty, must be addressed
before widespread adoption. Semi-autonomous systems that support, rather than replace, surgeons may offer a more
practical path toward clinical integration. Future research should prioritize multicentre validation, standardized reporting,
and human—machine collaboration frameworks to ensure safety and effectiveness. Overall, Al holds significant potential
to enhance precision and outcomes in vascular interventions but requires careful, evidence-based implementation.
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