

Phytochemical Screening, Anti-microbial Evaluation of Extract of Salvia officinalis L.

Prashanti Chitrapu*, Aditya Nath Pandey

Faculty of Pharmacy, Mansarovar Global University, Sehore, (M.P) - India

ABSTRACT

The present study was conducted to asses phytochemical and anti microbial activity of extracts of Salvia officinalis L. against bacteria and fungi. This experiment was conducted to valorize Salvia officinalis post-distilled aerial parts as natural antioxidants. Total phenolic contents were determined, the phenolic constituents were determined using HPLC with UV detection S. officinalis residues revealed phenolic diterpenes as main components. The phytochemical test revealed that the presence of proteins, carbohydrates, lipids, alkaloids, phenols, flavonoids, steroids, glycosides, tannins, terpenoids and resins. The antibacterial activity of methanol extract shows maximum inhibition zone on Gram positive bacteria. These results include antioxidant, antimicrobial properties. These findings suggest that S. officinalis by-products, particularly at flowering, may be considered as an interesting source of natural antioxidants, anti microbial properties.

KEYWORDS: Medicinal applications, herbal therapies, Salvia officinalis L., anti microbial properties.

How to Cite: Prashanti Chitrapu, Aditya Nath Pandey, (2025) Phytochemical Screening, Anti-microbial Evaluation of Extract of Salvia officinalis L., Vascular and Endovascular Review, Vol.8, No.11s, 366-374.

INTRODUCTION

As per WHO Traditional medicine is the sum total of the knowledge, skill, and practices based on the theories, beliefs, and experiences indigenous to different cultures, whether explicable or not, used in the maintenance of health as well as in the prevention, diagnosis, improvement or treatment of physical and mental illness.

World Health Organization define Traditional herbal medicines as naturally occurring, plant-derived substances with minimal or no industrial processing that have been used to treat illness within local or regional healing practices.

Traditional herbal medicine and their preparations have been widely used for the thousands of years in developing and developed countries owing to its natural origin and lesser side effects. These medicines initially took the form of crude drugs such as tinctures, teas, poultices, powders, and other herbal formulations.

There are many approaches to the search for new biologically active principles in higher plants. One can simply look for new chemical constitution and hope to find a biologist who is willing to test each substance with whatever pharmacological tests available.

A second approach is simply to collect every readily available plant, prepare extract and test each extract for one (or) more types of pharmacological activity. This random collection, broad screening method is a reasonable approach that eventually should produce useful drugs, but it is contingent as the availability of adequate findings and appropriate predictable bioassay systems.

Fig 1. Arial parts of Salvia officinalis L.

PLANT PROFILE

SALVIA OFFICINALIS L.

Salvia officinalis L. (Sage) is a perennial round shrub in the family of Labiatae/Lamiaceae. Salvia is the largest genus of this family and includes near 900 species.

Phytochemistry:

The major phytochemicals in flowers, leaves, and stem of S. officinalis are well identified. A wide range of constituents include alkaloids, carbohydrate, fatty acids, glycosidic derivatives (e.g.,cardiac glycosides, flavonoid glycosides, saponins), phenolic compounds (e.g., coumarins, flavonoids, tannins), poly acetylenes, steroids, terpenes/terpenoids(e.g., monoterpenoids, diterpenoids, triterpenoids, sesquiterpenoids), and waxes are found in S. officinalis.

MATERIAL & METHODS

PRLIMINARY INVESTIGATION

Collection of plant material:

The medicinal plant of salvia officinalis L was collected from natural habitat and authenticated by Dr. S. N. Dwivedi, Prof. & Head, Department of Botany, Janata PG College, APS, University, Rewa, M.P.

Preparation of plant powder:

The plant material of salvia officinalis L. was dried under shade and then powdered with mechanical grinder. The pulverized, sieved through 40 mesh to obtain a coarse powder and stored in an airtight container for further use.

Preparation of extracts:

About 250-250 gm of dried powder of salvia officinalis L. were subjected to soxhlation separately. It was first defatted with petroleum ether then exhaustively extracted with different solvent in a Soxhlet apparatus for 36 hours. The temperature was maintained at 40-50 degree centigrade. The solvents were removed by distillation under reduced pressure and the resulting semisolid mass was vacuum dried using rotary flash evaporator to obtain the extract.

Phytochemical Screening

The various extract obtained after extraction were subjected for phytochemical screening to determine the presence of following various phytochemical present in the extracts.

Tests for carbohydrates and glycosides:

Molisch's test:

Sample was treated with 2-3 drops of 1% alcoholic - napthol solution and 2 ml of conc. sulphuric acidwas added along the sides of the test tube. Appearance of brown ring at the junction of two liquids shows the presence of carbohydrates.

Legal's test:

To the sample 1 ml of pyridine and few drops of sodium nitroprusside solutions were added and then it was made alkaline with sodium hydroxide solution. Appearance of pink to red colour shows the presence of glycosides.

Borntrager's test:

Sample was treated with chloroform and then the chloroform layer was separated. To this equal quantity of dilute ammonia solution was added. Ammonia layer acquires pink color, showing the presence of glycosides.

Test for alkaloids:

A small portion of the sample was stirred separately with few drops of dilute hydrochloric acid and was tested with various reagents for the presence of alkaloids. The reagents are

□ Dragendroff''s reagent - Reddish brown ppt
□ Wagner's reagent - Reddish brown ppt
□ Mayer's reagent - Cream color ppt
□ Hager's reagent - yellow color ppt

Test for proteins and free amino acids:

Small quantities of the sample were dissolved in few ml of water and treated with following reagents.

Million's reagent: Appearance of red color shows the presence of protein and free amino acid.

Ninhydrin reagent: Appearance of purple color shows the presence of Proteins and free amino acids

Biuret's test: Equal volumes of 5% sodium hydroxide solution & 1% copper sulphate solution was added. Appearance of pink or purple color shows the presence of proteins and amino acids.

Test for tannins:

A small quantity of the sample was taken separately in water and test for the presence of phenol compounds and tannins was carried out with the following reagents.

□ Dilute Ferric chloride solution (5%) - Violet color.□ 10% lead acetate solution - White precipitate

Test for flavonoids

Alkaline reagent test:

To the test solution add few drops of magnesium hydroxide solution, intense yellow colour is formed which turns to colourless on addition of few drops of dilute acid indicates presence of flavonoids.

Shinoda's test:

Small quantities of the sample were dissolved in alcohol, to this piece of magnesium followed by concentrated hydrochloric acid drop wise added and heated. Appearance of magneta color shows the presence of flavonoids.

Tests for fixed oils and fats Spot test:

A small quantity of sample was separately pressed between two filter papers. Appearance of oil stain on the paper indicates the presence of fixed oil.

Few drops of 0.5Nalcoholic potassium hydroxide were added to a small quantity of sample along with a drop of phenolphtlein, the mixture was heated on a water bath for 1-2 hours, formation of soap or partial neutralization of alkali indicates the presence of fixed oils and fats.

Tests for steroids and triterpenoids:

Libermann-burchard test:

Sample was treated with few drops of acetic anhydride, boils and cooled. Then concentrated sulphuric acid was added from the side of test tube, brown ring was formed at the junction two layers and upper layer turns green which shows presence of steroids and formation of deep red colour indicates presence of triterpenoid.

Salkowski test:

Sample was treated with few drop of concentrated sulphuric acid, red colour at lower layer indicates presence of steroids and formation of yellow coloured lower layer indicates presence of triterpenoids.

Test for mucilages and gums:

Small quantities of sample was added separately to 25 ml. of absolute alcohol with constant stirring and filtered. The precipitates was dried in oil and examined for its swelling property for the presence of gum and mucilage.

Test for waxes:

To the test solution alcoholic alkali solution was added, the waxes get saponified.

Evaluation of Antimicrobial Activity

Method of Screening of Antimicrobial Activity

A drug is considered as bacteriostatic or fungistatic when it inhibits the growth or multiplication of bacteria or fungi respectively and considered as bactericidal or fungicidal when it actually results in the death of bacteria or fungi. Drugs that are bactericidal under certain circumstances may have an apparent bacteriostatic effect at the other times. Important factors for the antimicrobial activity are size of the inoculums, metabolic state of organisms, pH, temperature and duration of interaction, concentration of the inhibitor and presence of interfering substance. In Vitro tests are used as screening procedure for new agents and for testing susceptibility of individual isolates from infections to determine which of the available drugs might be useful therapeutically. In general, minimum inhibitory concentration (MIC) and sensitivity tests are used to express the effectiveness of a compound as an antimicrobial agent. This method is suitable for the organisms that grow well overnight such as most of the common aerobes and facultative anaerobes and rapidly growing fungi such as Candida Albicans. Several forms of disc diffusion methods have been advocated. Among this Kirby Bauer method is the official method of the USA Food & Drug Administration.

Preparation of the Nutrient Media

The following broths were used in the present work. Compositions of broths are as follows:

Table 1: Composition of Nutrient broth

S. no.	Component	Amount
1	Peptone (bacteriological)	10 gm
2	Beef extract	10 gm
3	Sodium chloride	5 gm
4	Purified water	1000 ml
5	Ph	7.2 ± 0.2

Table 2: Composition of Sabouraud's broth

S. no.	Component	Amount	
1	Dextrose	20 gm	
2	Peptone (mycological)	10 gm	
3	Agar	15 gm	
4	Purified water	1000 ml	
5	рН	7.2 ±	
		0.2	

The broths were prepared by dissolving the specified quantities of the dehydrated broth (Hi media) in purified water and were distributed 4 ml quantities in to each test tube. The tubes were closed with cotton plugs and sterilized by autoclaving at 121°C for 15 minutes.

Cultivation of Microorganisms

The bacterial cultures were aseptically inoculated into nutrient

broth and incubated under aerobic conditions at 37°C for 24 h. Fungal cultures were inoculated into Sabouraud's broth and incubated under aerobic conditions at 25 °C for 48 h. The following bacterial and fungal cultures were used for the study, enlisted in table 3:

Table 3: Different microbial cultures used

S. no.	Name of Microorganisms	Status
1	Bacilliu s Subtilis	Gram positive bacteria
2	Escherichia Coli	Gram negative bacteria
3	Candida Albicans	Fungi (yeast)
4	Aspergillus Niger	Fungi (mold)

The bacterial cultures were aseptically inoculated into nutrient broth and incubated under aerobic conditions at 37°C for 24 h. fungal cultures were inoculated in to Sabouraud's broth and incubated under aerobic conditions at 25°C for 48 h.

Determination of Antimicrobial Activity

Modified Kirby-Bauer method, one of the official methods among disc diffusion methods, was used for the evaluation of antimicrobial activity of the synthesized compounds. Circular paper disks of 6 mm diameter was impregnated with the specific amount of the test sample and were placed on a suitable nutrient/sabraud's agar medium in a petri plate which was inoculated on its surface with one of the test organisms. After incubation, the plates were observed for the growth inhibition zones around the disks. The diameter of the zone of inhibition is proportional to the antimicrobial activity of the substance. The diameters of the zone of inhibition were compared with that produced by the standard antibiotics.

Preparation of the Disks and Samples

Paper disks of 6 mm diameter and 2 mm thickness were used for the test. These disks were sterilized by autoclaving at 121 °C (15 lb PSIG) for 15 minutes. After drying, they were used for screening the antimicrobial activity.

The sterile filter paper disc of 6mm diameter soaked with plant extract (20 to 100 μ g/disk) was placed on the surface of the medium for assay and Ciprofloxacin (10 μ g/disk) was taken as standard antibiotics for the comparison of the antibacterial activity of the synthesized compounds and Clotrimazole (10 μ g/disk) were used as standard drugs for antifungal activity studies.

General Procedure

Each Petri plate containing nutrient/ sabouraud's agar medium was inoculated with one bacterial/ fungal culture by spreading the suspension of the organism with a sterile cotton swap. Each plate was divided into five equal portions along the diameter. Each portion was used to place one disk. Four disks of each sample were placed on four portions, one disk with standard drug and a disk impregnated with the plant extract. All the plates were kept in the refrigerator for 30 minutes to allow the diffusion of the sample into the refrigerator for 30 minutes to allow the diffusion of the sample into the surrounding agar medium. Then the plates inoculated with bacterial cultures were incubated at 37 °C for 18 h and those with incubated at 25 °C for 48 h. Diameter of the zones of inhibition wherever produced were measured and the average diameter for each sample was calculated. The diameters obtained for the test samples were compared with that produced by the standard antibiotics, ciprofloxacin for antibacterial activity and clotrimazole for antifungal activity. The results of antibacterial and antifungal activity are given in Tables and figures.

RESULTS AND DISCUSSION

Extraction

The dried powder of Salvia officinalis plants was extracted with 70% v/v hydro alcoholic solution. The solvents were removed by distillation under reduced pressure and the resulting semisolid mass was vacuum dried using rotary flash evaporator to obtain the extract. The percentage yields of hydroalcohalic plant extract was found to be 60 %.

Phytochemical Screening

The qualitative phytochemical screening of Salvia officinalis (Linn.) in six different extracts i.e. Petroleum ether, chloroform, ethanol and hydroalcohalic (Water and ethanol in 1:1 ratio) showed that there is presence of carbohydrates, glycosides, proteins, alkaloids, saponin, flavonoids, steroids, tannins, phenolic compounds. However, steroids were totally absent in all extracts. The results of the phytochemical screening of extract of Salvia officinalis present in Table-4. Preliminary phytochemical screening was useful in prediction of nature of drugs and also useful for the detection of several constituents present in solvent. Ethanolic and Hydroalcohalic extract of Salvia officinalis (Linn.) was accounted for the presence of alkaloids, carbohydrates, glycosides, proteins, flavonoids, phenol and tannin. While chlorofor extract showed the presence of alkaloids, carbohydrates, glycosides, flavonoids and phenolic compounds. Only Petroleum ether and water extract showed the presence of mucilage & gum and wax. All the extract showed the presence of alkaloids, proteins, flavonoids, carbohydrates, glycosides and flavonoids.

Hydroalcohalic Petroleum ether Chloroform S.No **Test** Ethanol Extract Extract. Extract Alkaloids 1. + ve + ve + ve + ve + ve + ve 2. Flavonoids + ve + ve Steroids and 3. - ve - ve - ve - ve Triterpenoid 4. Phenolic - ve + ve + ve - ve &Tannins 5. Saponins -ve -ve -ve 6. Carbohydrate and + ve + ve +ve + ve Glycoside Proteins and 7. + ve + ve + ve + ve amino acid 8. Mucilage and + ve - ve - ve - ve gum Wax 9. + ve - ve - ve - ve

Table 4: Phytochemical Screening of Salvia officinalis L Plant Extracts

Antibacterial Activity of Salvia officinalis

Antibacterial activity of different con. of plant extracts in terms of MIC is presented in Table 5 and Figure. 2 for out of $100 \,\mu\text{g/ml}$ concentration of plants extract exhibit any antibacterial activity. Also, the diameter of inhibition is shown in Figure. 3, its graphical representation is shown in Figure. 4.

Table 5. Anti Dacterial Activity of hydroaconanc extract of 5. officinals				
Concentration of Extract(µg/ml)	B. subtilis	E. coli		
25	13(6.15) ^a	11(10.5)		
50	15(13.5)	18(11.5)		
100	18(22.4)	23(24.2)		
Control	-	-		
Ciproflaxacin	21(4.13)	20(19.2)		

Table 5: Anti Bacterial Activity of hydroalcohalic extract of S. officinalis

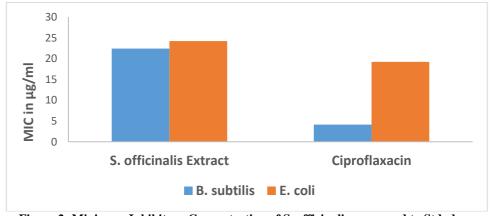


Figure 2: Minimum Inhibitory Concentration of S. officinalis compared to Std. drug

Figure 3: Antibacterial Activity of S. officinalis hydroalcohalic extract

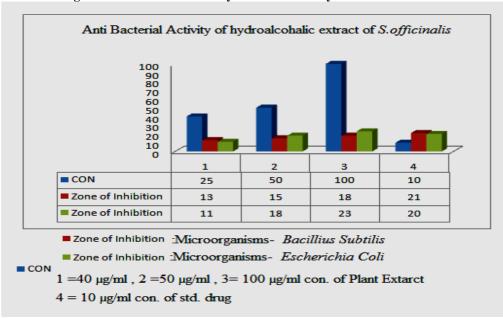


Figure 4: Anti-bacterial activity of S. officinalis Extract

Anti Fungal Activity

Antifugnal activity of different con. of plant extracts in terms of MIC is presented in Table 6 and Figure 5 for out of $100 \,\mu\text{g/ml}$ concentration of plants extract exhibit any antibacterial activity. Also, the diameter of inhibition is shown in Figure 6, its graphical representation is shown in Figure 7.

Table 6: Anti Fungal Activity of hydroalcohalic extract of S. officinalis

Concentration of Extract(µg/ml)	C. albicans	A. niger
25	14	18
50	16	19
100	20	21
Control	-	-
Clotrimazole	21	20

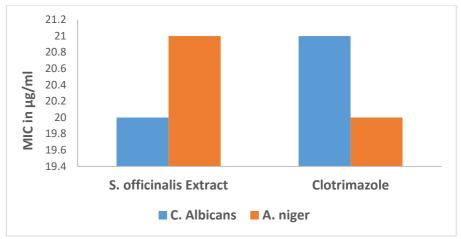


Figure 5: Minimum Inhibitory Concentration of S. officinalis compared to Std. drug

Figure 6: Antifungal Activity of S. officinalis hydroalcohalic extract

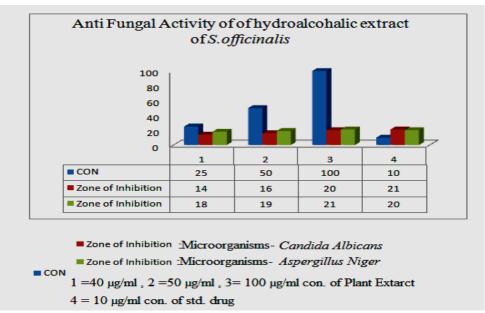


Figure 7: Anti-fungal activity of synthesize compound

S. officinalis extracts were screened for in vitro antimicrobial activity against gram-positive bacteria B. Subtilis and gramnegative bacteria and E. Coli, cutaneous fungi C. Albicans and A. Niger. Salvia officinalis plant extract at $100~\mu g/ml$ exhibited excellent antibacterial activity against E. coli in comparison to standard drug – Ciprofloxacin. and excellent antifungal activity against A. Niger in comparison to standard drug – Clotrimazole.

CONCLUSION

To conclude, the present work analyzed the extract of Salvia officinalis by studying the antioxidant, antifungal and antimicrobial activities and by performing phytochemical screnning. The results of this study show that the plant studied is rich in phenols, flavonoids, alkaloids, saponoside, sterol and tannins, which explains the important antioxidant effect of the extract, and at the same time the antimicrobial and antifungal activity against bacteria and standard yeasts used. Extracts from S. officinalis were tested for their in vitro antibacterial activity against gram-negative bacteria, E. Coli, cutaneous fungi C. albicans, and A. nigger, as well as gram-positive bacteria, B. subtilis. The plant extract of Salvia officinalis, had superior antibacterial activity against E. coli when compared to the common medication, Ciprofloxacin. significantly superior antifungal efficacy when compared to the conventional medication, Clotrimazole. This work reveled that the extract of Salvia officinalis L. having antimicrobial and antifungal activity. By studying the antioxidant, antifungal and antimicrobial activities and by performing phytochemical screening, the results of this study show that the plant can be used for various pharmacological aspects.

REFERENCE

- 1. Sharma Alok (2008). Herbal medicine for market potential in India: An Overview. Academic Journal of Plant Sciences, IDOSI Publications, 1(2): 26-36.
- 2. Bozzuto Anne (2000). Homeopathy, Herbs and Hypnosis Common Practices, In Complementary and Alternative Medicine, Jacksonville Medicine.
- 3. Mehrola, M.N., Quality control and equipments of medicinal plants used in traditional medicines ethanobotany, 1990(2), pp 19-20.
- 4. Farasworth, N.R., Pezzuto, J.M., Rational approaches to the development of plant derived drugs in proceeding of the 2nd national symposium on The Pharmacology and Chemistry of natural products, Joaopessoa, Brazil, 1983: 3-5.
- 5. The Ayurvedic Phrmacopoeia of India., Government of India., Ministry of Health and Family Welfare., New Delhi. 1999, Part I, Vol III, pp 235.
- 6. S. Eswaran, A. V. Adhikari and N. S. Shetty, "Synthesis and Antimicrobial Activities of Novel Quinoline Derivatives Carrying 1,2,4-Triazole Moiety," European Journal of Medicinal Chemistry, Vol. 44, No. 11, 2009, pp. 4637 4647.
- 7. Bhargava S, Dhabhai K, Batra A, Sharma A, Malhotra B. Zingiber Officinale: Chemical and phytochemical screening and evaluation of its antimicrobial activities. J Chem Pharm Res. 2012;4(1):360-4. 21.
- 8. Ahameethunisa AR, Hoper W. Antibacterial activity of Artemisia nilagirica leaf extract against clinical and phytopathogenic bacteria. BMC Complement Altern Med. 2010;10(1):6. 22.
- 9. [Gulluce M, Sahin F, Sokmen M, Ozer H, Daferera D, Sokmen A, et al. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chem. 2007;103(4):1449-56. 23.
- 10. Rahmoun NM, Ziane H, Boucherit-Otmani Z. Antibacterial and antifungal screening of four medicinal plants. J Coast Life Med. 2014;2(12):975-9. 24.
- 11. EUCAST (European Committee for Antimicrobial Susceptibility Testing). Determination of minimum inhibitory concentrations (MICs) of antimicrobial agents by broth dilution. Clin Microbiol Infect. 2003;9(8):1-7. 25.
- 12. Mezouar D, Lahfa FB, Abdelouahid DE, Adida H, Rahmoun NM, BoucheritOtmani Z. Activité antimicrobienne d'extraits d'écorce de racines de Berberis vulgaris. Phytothérapie 2014;12(6):380-5. 26.
- 13. Ben Sassi A, Harzallah-Skhiri F, Aouni M. Investigation of some medicinal plants from Tunisia for antimicrobial activities. Pharm Biol. 2007;45(5):421-8. 27
- 14. Al-Zoreky NS. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int J Food Microbiol. 2009;134 (3):244-8. 28.
- 15. Ateş DA, Erdorul ÖT. Antimicrobial activities of various medicinal and commercial plant extracts. Turk J Biol. 2003; 27(3):157-62. 29.
- 16. Habibi AA, Zubek SA, Abushhiwa MA, Ahmed MO, El-Khodery SA, Osman HY, et al. Antibacterial activity of selected Libyan medicinal plants against Pseudomonas aeruginosa and Escherichia coli. J Pharmacogn Phytochem. 2015; 3 (6):197-201.30.
- 17. El Bouzidi L, Larhsini M, Markouk M, Abbad A, Hassani L, Bekkouche K. Antioxidant and antimicrobial activities of Withania frutescens. Nat Prod Commun. 2011;6(10):1447-50.
- 18. Kumar S, Sharma S, Vasudeva N. Review on antioxidants and evaluation procedures. Chinese journal of integrative medicine. 2017 Oct 6:1-2
- 19. Khalili M, Ebrahimzadeh MA. A review on antioxidants and some of their common evaluation methods. Journal of Mazandaran University of Medical Sciences. 2015 Jan 10;24(120):188-208.
- 20. Dontha S. A review on antioxidant methods. Asian J. Pharm. Clin. Res. 2016 Oct;9(2):14-32.
- 21. Wichtl, M., 2004. Herbal drugs and phytopharmaceuticals: a handbook for practice on a scientific basis (No. Ed. 3). Medpharm GmbH Scientific Publishers.
- 22. Zargari, A., 1997. Medicinal plants. Tehran University of Medical Sciences.
- 23. Perry, E.K., Pickering, A.T., Wang, W.W., Houghton, P.J. and Perry, N.S., 1999. Medicinal plants and Alzheimer's disease: from ethnobotany to phytotherapy. Journal of pharmacology, 51(5), pp.527-534.
- 24. Capek, P. and Hříbalová, V., 2004. Water-soluble polysaccharides from Salvia officinalis L. possessing immunomodulatory activity. Phytochemistry, 65(13), pp.1983-1992.
- 25. Lima, C.F., Valentao, P.C., Andrade, P.B., Seabra, R.M., Fernandes-Ferreira, M. and Pereira-Wilson, C., 2007. Water and methanolic extracts of Salvia officinalis protect HepG2 cells from t-BHP induced oxidative damage. Chemico-Biological Interactions, 167(2), pp.107-115.

- 26. Dincer, C., Topuz, A., Sahin-Nadeem, H., Ozdemir, K.S., Cam, I.B., Tontul, I., Gokturk, R.S. and Ay, S.T., 2012. A comparative study on phenolic composition, antioxidant activity and essential oil content of wild and cultivated sage (Salvia fruticosa Miller) as influenced by storage. Industrial Crops and Products, 39, pp.170-176.
- 27. Pizzale, L., Bortolomeazzi, R., Vichi, S., Überegger, E. and Conte, L.S., 2002. Antioxidant activity of sage (Salvia officinalis and S fruticosa) and oregano (Origanumonites and O indercedens) extracts related to their phenolic compound content. Journal of the Science of Food and Agriculture, 82(14), pp.1645-1651.
- 28. Garcia, C.S., Menti, C., Lambert, A.P.F., Barcellos, T., Moura, S., Calloni, C., Branco, C.S., Salvador, M., Roesch-Ely, M. and Henriques, J.A., 2016. Pharmacological perspectives from Brazilian Salvia officinalis (Lamiaceae): antioxidant, and antitumor in mammalian cells. Anais da Academia Brasileira de Ciências, 88, pp.281-292.
- 29. NevesCarvalho, A., Firuzi, O., Joao Gama, M., van Horssen, J. and Saso, L., 2017. Oxidative stress and antioxidants in neurological diseases: is there still hope? Current drug targets, 18(6), pp.705-718.
- 30. Li, H., Horke, S. and Förstermann, U., 2013. Oxidative stress in vascular disease and its pharmacological prevention. Trends in pharmacological sciences, 34(6), pp.313-319.