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ABSTRACT 
This paper analysis a Non-Markovian queueing model applied to a diagnostic laboratory system, where patient samples arrive 

according to a general distribution single server pattern with batch service where server undergoes multiple working vacations 

with server breakdown. The laboratory begins processing only when at least “a” number of samples are available and can handle 

up to a maximum of “b” samples per batch. The testing equipment described as a server may enter multiple working vacation 

periods. Patient samples arriving follows General distribution and the service follows Exponential distribution. The breakdown 

that may happens during working vacation periods or during regular busy periods are considered in this model. The system is 

formulated through a discrete-time Markov chain at pre-arrival epochs. The steady state equation, steady state solution for the 

described model are derived to determine key performance measures known as mean queue length. Finally, this paper computes 

the numerical analysis of mean queue length with the types of breakdown to study how breakdown parameters influence 

laboratory congestion and service reliability. The results offer practical insights for diagnostic centres to optimize maintenance 

scheduling, batch processing, and equipment validity. 

KEYWORDS: Batch service, Breakdown, General Arrival, Multiple working vacation, Regular busy period, Queue length, 
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INTRODUCTION 
In modern healthcare environments, particularly in diagnostic and medical laboratory systems, managing the efficient flow of 

patient samples has become a critical operational challenge. Laboratories often receive unpredictable patient inflows from various 

sources such as outpatient departments, emergency units, or external clinics. Delays in sample processing can lead to diagnostic 

backlogs, delayed treatment decisions, and decreased patient satisfaction. Therefore, mathematical models that can effectively 

capture the dynamic behaviour of such systems are essential for improving service efficiency and reliability. Queueing theory 

provides a powerful analytical tool to study and optimize healthcare service processes involving randomness in patient arrivals, 

testing times, and equipment reliability. Diagnostic centres typically process biological samples in batches. For example, blood 

or biochemical samples are often analysed in groups using automated analysers to ensure cost-effective operation and reduce 

chemical usage. Such a system can be effectively modelled as a batch service queue, represented as GI/M(a,b)/1, where arrivals 

follow a general independent distribution (GI), and the service times are exponentially distributed (M). The parameters “a” and 

“b” represent the minimum and maximum batch sizes, respectively, that the analyser can process at one time. When fewer than 

“a” number of samples are waiting, the equipment remains idle or enters a state of reduced service capacity known as working 

vacation.  

 

In a practical laboratory setting, testing machines do not always function continuously at full speed. Periods of lower workload, 

staff shortages, or scheduled maintenance often lead the equipment to operate at a reduced service rate, while still processing 

some samples. This scenario corresponds to queueing theory is known as a working vacation. During such periods, the analyser 

is not completely idle but continues to serve samples more slowly than usual. When multiple such reduced-capacity periods occur 

consecutively, the system is said to experience multiple working vacations (MWV). This concept accurately reflects real-life 

diagnostic environments where analysers periodically enter maintenance before resuming normal operation. 

 

In addition to working vacations, breakdowns represent another major source of service disruption in healthcare diagnostics. 

Equipment failures can arise due to overuse, reagent shortages, software errors, or calibration faults. These breakdowns may 

occur during either regular busy periods or working vacation periods. Both types of breakdowns reduce the effective testing rate, 

increase the sample queue, and impact patient waiting times. Proper modelling of these interruptions is necessary for laboratory 

administrators to design preventive maintenance strategies and minimize overall service downtime. 

 

To represent these realistic laboratory processes, this study proposes and analyses a GI/M(a,b)/1 queueing model with multiple 

working vacations and two types of breakdowns 𝛽𝑣 𝑎𝑛𝑑  𝛽𝑅.. The model captures both the batch nature of diagnostic testing and 

the stochastic nature of interruptions. A discrete-time Markov chain approach is used at the pre-arrival epoch to derive steady-
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state probabilities for the system’s various operational states known as regular busy, working vacation, idle, and breakdown. 

Using these probabilities, key performance measures such as mean queue length (Lq), server utilization, and system reliability 

are obtained. 

 

Furthermore, a numerical sensitivity analysis is carried out to examine how varying breakdown parameters 𝛽𝑣  𝑎𝑛𝑑  𝛽𝑅. influence 

system behavior. The proposed model thus serves as a realistic analytical framework for healthcare managers and diagnostic 

centre operators. It enables quantitative evaluation of operational strategies such as adjusting batch sizes, optimizing maintenance 

frequency to minimize waiting times and improve testing efficiency. The study can further be extended to multi-server laboratory 

environments to enhance the quality of laboratory. 

 

REVIEW OF LITERATURE 
Queuing theory has been widely applied in modelling and analyzing systems where resources are shared among competing users 

such as computer networks, manufacturing systems, and service facilities. Telecommunication systems with packet transmission, 

Manufacturing systems with Batch Processing and Maintenance, Health care systems with Multiple Patient services are some of 

the real-life examples of the described model. Several studies have analyzed GI/M(a,b)/1 queues with bulk services.  

 

The concepts of batch queue were first introduced through the research of Bailey (1954) [1]. The general bulk service rule was 

pioneered by Neuts (1967) [2] with Poisson arrival and general service time distribution. Easton G.D and Chaudhry M L (1982) 

[3] discussed about Ek/ M (a,b)/1 queueing system and its numerical analysis. Chaudhry M. I and Templeton J.G.C (1983) [4] 

discussed A first course in bulk queuing. Choi and Han (1994) [5] analyzed the GI/ M (a,b) / 1 queue with multiple vacations.   

Servi. L.D and Finn S.G (2002) [6] have assessed M/M/1 queues with working vacations (M/M/1/WV). Non-Markovian Queuing 

Systems was discussed in Stochastic Models in Queuing Theory by Medhi (2003) [7].  

 

William J. Gray (2004) [8] developed Queuing Model with Multiple Types of Server Breakdown. GI/M/1 working vacation model 

was examined by Baba (2005) [9]. Tian, Li and Zhang (2007) [10] provided a survey results of working vacation queues. Gross, 

D. and Harris, C.M (2008) [11] have proposed fundamentals of queuing theory. Zhang and Xu (2008) [12]    have examined the 

M/M/1 queue with multiple working vacation.   Julia Rose Mary and Afthab Begum (2009) [13] have analyzed the Markovian 

M/M(a,b)/1 queuing model under multiple working vacation and derived the steady state probability distribution and mean queue 

length for the model. Ghimere R.P and Ghimire S (2011) [14] studied heterogeneous arrival and departure M/M/1 queue with 

vacation and service breakdown.  

 

Sushil Ghimire, R.P. Ghimire, Gyan Bahadur Thapa (2015) [15] examined the Mathematical models of the MbM/1 bulk arrival 

queuing system. Steady state analysis of M/M (a,b)/MWV/BR queuing model was studied by Rajalakshmi, Pavithra, Julia Rose 

Mary (2016) [16] . Gopinath Panda, Abhijit Datta Banik and Dibyajyoti Guha (2018) [17] assessed Stationary Analysis and 

optimal control under multiple working vacation policy in a GI/M(a,b)/1 queue. Extended analysis and computationally efficient 

results for the GI/ M(a,b)/1 queuing system was analysed by Samanta S.K Bank.B (2020) [18]. Praveen Kumar Agarwal, Anamika 

Jain, Madhu Jain (2021) [19] have proposed M/M/1 Queuing Model with Working Vacation and Two Types of Server 

Breakdown.  

 

Mohan Chaudhry and jing Gai (2022) [20] proposed analytic and computational analysis of GI/M(a,b)/c queuing system. A.N. 

Dudin, S.R. Chakravarthy, S.A. Dudin, O.S. Dudina (2023) [21] studied Queueing System with Server Breakdowns and 

Individual Customer Abandonment. Sundrapandian. S and Nandhini.S (2024) [22] developed the sensitivity analysis of a non-

Markovian feedback retrial queue, reneging, delayed repair with working vacation subject to server breakdown. Lydia P and 

Julia. K (2024) [23] analyzed the performance of M/M(a,b)/1/MWV Queuing Model with the Busy Period Breakdown. Yi Zheng, 

Juxihong Julaiti, Guodong Pang (2024) [24] documented Adaptive Service Rate Control of an M/M/1 Queue with Server 

Breakdowns. This study extends the existing model of general arrival with batch service by developing the steady state analysis 

of GI/M (a,b)/ 1 queue with multiple working vacation and types of break down. 

 

This study extends the existing model of general arrival with batch service by developing the steady state analysis of GI/M (a,b)/ 

1 queue with multiple working vacation and types of break down. 

 

METHODOLOGY 
In this model the in the diagnostic laboratory process the analyser acts as a server that processes  the patients samples  in batches 

according to the general bulk service rule (GBSR) introduced by Neuts (1967). This rule states that analyser starts service only 

when there is at least “a” number of samples are in the system and maximum service capacity is “b” samples in a single batch. 

Regular service follows exponential distribution and it is denoted by the parameter 𝜇𝑅𝐵. After completing each service if the 

server finds at most “b” number of samples in the system then the server takes all “b” samples in a single batch to serve. If  the 

analyser finds more than “b” then it takes first “b” number of samples as first batch for service. Thus, the service time of batches 

of size “k” (a ≤ k≤ b) is assumed to be independent identically distributed. If there are less than “a” number of samples in the 

system then the server takes vacation. During vacation if the server finds the laboratory with more than “a” number of samples 

then the analyser starts the service with lower service rate 𝜇′𝑊𝑉  which follows exponential distribution.  The analyser repeats 

another working vacation if it  finds less than “a” number of samples in the laboratory (i.e) multiple working vacation which is 

exponentially distributed and is assumed to be η. In this model the arrival is assumed to follow General distribution with the 

parameter λ. The model is considered for the server breaking down during working vacation and regular busy period which follow 
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Poisson distribution with a parameter 𝛽𝑣  𝑎𝑛𝑑  𝛽𝑅. respectively. With the help of the above parameters, the model is analysed 

under Discrete-Time Markov Chain pre-arrival epoch and there by Mean queue length is also derived. 

 

Let 𝑡𝑛= 1, 2, 3, 4… be the arrival time of the n th number of samples. If arrival stream is empty then 𝑡0= 0. The inter arrival times 

{ 𝑡𝑛 , n = 1,2,3, 4….} are in-dependent and identically distributed with a general distribution function G(t) with mean 1/λ and the 

Laplace Stieltjes Transform of G(t) is denoted by G*(θ) where θ ≥ 0. Let 𝑁𝑞(𝑡), be the number of patients samples waiting for 

testing in the queue at time t and Jn(t) = 0, 1, 2 where server is in idle vacation, working vacation and regular busy period 

respectively. In this model the process {(Nq (tn - 0), Jn); n ≥ 1} is an embedded Markov chain with state space Ꞇ={(n≥0); J=1,2} 

U {0 ≤n ≤ a-1; J=0}. 

 

The steady state queue size probabilities at a time t are defined by 

𝑃𝑛𝑅(𝑡) = lim
𝑘→∞

𝑃𝑟{Nq (𝑡𝑘 − 0)  = n, 𝐽𝑛  = 1},  n≥0  

𝑄𝑛𝑊(𝑡) = lim
𝑘→∞

𝑃𝑟{Nq (𝑡𝑘 − 0)  = n, 𝐽𝑛  = 2},  n≥0 

𝑅𝑛𝐼(𝑡) = lim
𝑘→∞

𝑃𝑟{Nq (𝑡𝑘 − 0)  = n, 𝐽𝑛  = 0},  0 ≤ n ≤ a-1 

 

Assuming the steady state probabilities of 𝑃𝑛𝑅 , 𝑄𝑛𝑊 𝑎𝑛𝑑𝑅𝑛𝐼  exist and denoted as the analyser is in regular busy period, in working 

vacation period and in idle period respectively. Then   

𝑃𝑛𝑅= lim
𝑡→∞

𝑃𝑛𝑅(𝑡); 𝑄𝑛𝑊= lim
𝑡→∞

𝑄𝑛𝑊(𝑡); 𝑅𝑛𝐼= lim
𝑡→∞

𝑅𝑛𝐼(𝑡) 

 

During working vacation and regular busy period there will be n number of  patients samples waiting for testing in the queue and 

the system has k (a ≤ k ≤ b) samples in service, whereas in idle period the number of samples waiting for testing in the queue and 

in the system are same. 

 

Let 𝑏𝑘 denote the probability that k batches are served at regular service rate as 𝜇𝑅𝐵 in an inter arrival time.  Then  

𝑏𝑘 =  ∫ 𝑒−𝜇𝑅𝑡

∞

0

  
(𝜇𝑅𝐵𝑡)𝑘

𝑘!
 𝑑 𝐺(𝑡)                  𝑘 ≥ 0 

We define 𝑤𝑘 be the probability that working vacation time is greater than an interarrival time and the service completion of k – 

batches occur at a rate 𝜇′𝑊𝑉 in an inter-arrival time. Then 

𝑤𝑘 =  ∫ 𝑒−𝜂𝑡 

∞

0

(𝑒−𝜇′𝑊𝑉𝑡)(𝜇′𝑊𝑉  𝑡)𝑘

𝑘!
𝑑𝐺(𝑡)           𝑘 ≥ 0 

Taking 𝑡𝑘  as the probability that the server returns from vacation in an inter arrival time and k service completions occur in an 

inter arrival time. Then 

                   𝑡𝑘 =  ∫ ∑ {∫ 𝜂𝑒−𝜂𝑥  
(𝜇′𝑤𝑣 𝑥)𝑡 

𝑖!

𝑡

0
𝑘
𝑖=0

∞

0
 𝑒−𝜇′𝑊𝑉 𝑥  

(𝜇𝑅𝐵 (𝑡−𝑥))𝑘−𝑖

(𝑘−𝑖)!
  𝑒−𝜇𝑅𝐵(𝑡−𝑥) 𝑑𝑥} 𝑑𝐺(𝑡)        𝑘 ≥ 0 

Suppose 𝑑𝑘 indicates the probability that the analyzer gets breakdown at the rate of 𝛽𝑉  during working vacation period. Then 

                  𝑑𝑘 =  ∫ 𝑒−𝛽𝑉𝑡  

∞

0

 
(𝛽𝑣𝑡)𝑘

𝑘!
   𝑑𝐺(𝑡),                   𝑘 ≥ 0 

 Assuming 𝑒𝑘 represents the probability that the analyzer gets breakdown at the rate of 𝛽𝑅  during regular busy period. Then 

                 𝑒𝑘 =  ∫ 𝑒−𝛽𝑅𝑡 

∞

0

 
(𝛽𝑅𝑡)𝑘

𝑘!
   𝑑𝐺(𝑡),                   𝑘 ≥ 0 

By considering the above probabilities steady state equations are written and by applying the displacement between the state of 

Markov chain the steady state solution at pre - arrival time are calculated.  

 

Steady State Equations: 

During Idle Period: 

𝑅𝑛𝐼 = 𝑅(𝑛−1)𝐼 +  ∑ 𝑄𝑘𝑏+𝑛−1(1 − ∑(𝑤𝑖 + 𝑡𝑖

𝑘

𝑖=0

∞

𝑘=0

+ 𝑑𝑖)) +  ∑ 𝑃𝑘𝑏+𝑛−1

∞

𝑘=0

  (1 − ∑(𝑏𝑖

𝑘

𝑖=0

+ 𝑒𝑖))      

1 ≤ 𝑛 ≤ 𝑎 − 1 (1)  

𝑅0𝐼 = ∑ ∑ 𝑄(𝑘−1)𝑏+𝑗
𝑏−1
𝑗=𝑎−1 (1 − ∑ (𝑤𝑖 + 𝑡𝑖

𝑘
𝑖=0

∞
𝑘=1 + 𝑑𝑖)) + ∑ ∑ 𝑃(𝑘−1)𝑏+𝑗

𝑏−1
𝑗=𝑎−1

∞
𝑘=1 (1 − ∑ (𝑏𝑖 + 𝑒𝑖

𝑘
𝑖=0 ))) + 𝑅(𝑎−1)𝐼  (1 − (𝑡0 + 𝑤0))      (2) 

 During Working Vacation Period: 

𝑄𝑛𝑊 =  ∑ 𝑄𝑘𝑏+𝑛−1 (𝑤𝑘 + ∞
𝑘=0 𝑑𝑘  )         𝑛 ≥ 1                                                                  (3) 

𝑄0𝑊 =  ∑ ∑ 𝑄(𝑘−1)𝑏+𝑗
𝑏−1
𝑗=𝑎−1  (𝑤𝑘

∞
𝑘=1 + 𝑑𝑘) + 𝑅𝑎−1𝐼𝑤0                                                                   (4) 

During Regular Busy Period:                                 

𝑃𝑛𝑅 =  ∑ 𝑃𝑘𝑏+𝑛−1(𝑏𝑘
∞
𝑘=0  +  𝑒𝑘) +  ∑ 𝑄𝑘𝑏+𝑛−1

∞
𝑘=0 (𝑡𝑘    )   𝑛 ≥ 1                         (5) 

𝑃0𝑅 =  ∑ ∑ 𝑃(𝑘−1)𝑏+𝑗
𝑏−1
𝑗=𝑎−1 (𝑏𝑘

∞
𝑘=1 +  𝑒𝑘) +  ∑ ∑ 𝑄(𝑘−1)𝑏+𝑗

𝑏−1
𝑗=𝑎−1

∞
𝑘=1 (𝑡𝑘    ) + 𝑅𝑎−1 𝐼𝑡0                       (6)                                                

With the aid of the steady state equation, steady state solution is derived. 
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Steady State Solution: 

To obtain steady state solution we use forward shifting operator E on 𝑃𝑛𝑅  𝑎𝑛𝑑 𝑄𝑛𝑊 as 

𝐸(𝑃𝑛𝑅) =  𝑃𝑛+1 and  𝐸(𝑄𝑛𝑊) =  𝑄𝑛+1 

Thus, the Eq (3) gives the homogeneous equation: 

( 𝐸 −  ∑ 𝐸𝑘𝑏∞
𝑘=0 (𝑤𝑘 +  𝑑𝑘)) 𝑄𝑛𝑊 = 0        , 𝑛 ≥ 0                                        (7)                                      

And the Eq (5) gives the non- homogeneous equation: 

( 𝐸 −  ∑ 𝐸𝑘𝑏(𝑏𝑘
∞
𝑘=0  +  𝑒𝑘  ) ) 𝑃𝑛𝑅 =  ∑ 𝑄𝑘𝑏+𝑛 (𝑡𝑘  )         𝑛 ≥ 0∞

𝑘=0                     (8) 

To obtain 𝑃𝑛𝑅  , 𝑄𝑛𝑊 , 𝑎𝑛𝑑 𝑅𝑛𝐼 ,  let us assume 𝐵(𝑧𝑏) , 𝑊(𝑧𝑏), 𝐷(𝑧𝑏) 𝑎𝑛𝑑 𝐸(𝑧𝑏)  respectively to denote Probability Generating 

Function of 𝑏𝑘  , 𝑤𝑘  , 𝑑𝑘   𝑎𝑛𝑑 𝑒𝑘   then we have: 

 𝐵(𝑧𝑏) = ∑ 𝑏𝑘
∞
𝑘=0 𝑧𝑘𝑏  =  𝐺∗(𝜇𝑅𝐵(1 − 𝑧𝑏 ))                                            (9) 

𝑊(𝑧𝑏) = ∑ 𝑤𝑘
∞
𝑘=0 𝑧𝑘𝑏 =  𝐺∗(𝜂 + 𝜇′𝑤𝑣(1 − 𝑧𝑏  ))                               (10) 

𝐷(𝑧𝑏) = ∑ 𝑑𝑘
∞
𝑘=0 𝑧𝑘𝑏 = 𝐺∗(𝜂 + 𝛽𝑣(1 − 𝑧𝑏 ))                                            (11) 

𝐸(𝑧𝑏) = ∑ 𝑒𝑘
∞
𝑘=0 𝑧𝑘𝑏 = 𝐺∗(𝛽𝑅(1 − 𝑧𝑏 ))                                      (12) 

If 𝜌 = ( 
𝜆

𝑏µ
 ) < 1, then the equation z= B (zb) has a unique root 𝑟𝑅 inside (0,1). This result follows from the corresponding result 

of GI/M/1 model of Gross and Harris (1985), B( 𝑟𝑅
b) = 𝑟𝑅 with 0< 𝑟𝑅< 1. 

If η > 0 then the equation 𝐺∗(𝜂 + 𝜇′𝑊𝑉(1 − 𝑧𝑏 )) has a unique root 𝑟1𝑉  in the interval (0,1), (𝑖. 𝑒) 𝑊 (𝑟1𝑉
𝑏) = 𝑟1𝑉 with 0< 𝑟1𝑉 

<1. 

If   𝛽𝑣 and   𝛽𝑅 are in (0,1), then the equation 𝐷(𝑧𝑏)  =  z and E(𝑧𝑏)  =  z have unique roots such as  𝑟1𝛽𝑣 and 𝑟𝛽𝑅 lie inside (0,1) 

respectively. 

Hence the homogeneous difference Eq (7) has a solution 

 𝑄𝑛𝑊 =  𝑟1𝑉
𝑛 𝑄0𝑊             𝑛 ≥ 0                  (13) 

And the non-homogeneous difference Eq (8) has a solution 

𝑃𝑛𝑅 = (𝐿𝑟𝑅
𝑛 +  𝑀 𝑟1𝑉

𝑛) 𝑄0𝑊        𝑛 ≥ 0                                                                                               (14) 

Where     𝑀 =  
𝑇(𝑟1𝑉

𝑏)

𝑟1𝑉−𝐵(𝑟1𝑉
𝑏)−𝐷(𝑟1𝑉

𝑏)−𝐹 (𝑟1𝑉
𝑏   

and 𝑇𝑟1𝑉
𝑏 =  ∑ 𝑟1𝑉

𝑘𝑏𝑡𝑘
∞
𝑘=0   =   𝑀( 𝑟1𝑉 − 𝐵 (𝑟1𝑉

𝑏) − 𝐷(𝑟1𝑉
𝑏 ) − 𝐹 (𝑟1𝑉

𝑏)                 (15) 

Thus   𝑃𝑛𝑅 = [𝐿𝑟𝑅
𝑛 +  (∑ 𝑟1𝑉

𝑘𝑏∞
𝑘=0 𝑡𝑘)

𝑟1𝑉
𝑛

𝑟1𝑉−𝐵(𝑟1𝑉
𝑏)−𝐷(𝑟1𝑉

𝑏)
] 𝑄0𝑊        𝑤ℎ𝑒𝑟𝑒 𝑟1𝑉 ≠ 𝑟𝑅                                        (16) 

 The expression 𝑅𝑛𝐼  is obtained by substituting 𝑄𝑛𝑊   and  𝑃𝑛𝑅   from Eq (13) & (14)  

𝑅𝑛𝐼 =  [𝐿 (
1−𝑟𝑅−𝛽𝑅

1− 𝑟𝑅
) (

𝑟𝑅
𝑎−1−𝑟𝑅

𝑛

1−𝑟𝑅
𝑏 ) +  (𝑀 + 1) ((

1−𝑟1𝑉−𝛽𝑉

1− 𝑟1𝑉
) (

𝑟1𝑉
𝑎−1−𝑟1𝑉

𝑛

1−𝑟1𝑉
𝑏 )) +  

𝑟1𝑉
𝑎−1−𝑟1𝑉

𝑛

𝑟1𝑉
𝑏 (1− 𝑟1𝑉)

+  
𝑟1𝑉

𝑏−𝑟1𝑉
𝑎

𝑤0𝑟1𝑉
𝑏 (1− 𝑟1𝑉)

 ]  𝑄0𝑊           

0 ≤ 𝑛 ≤ 𝑎 − 1        (17) 

Thus, the steady state queue size probabilities are expressed in terms of 𝑄0𝑊  and 𝐿. 

Now 𝐿 can be determined by substituting 𝑄𝑛𝑊   and  𝑃𝑛𝑅   in Eq (6): 

Thus 

𝐿 (
𝑟𝑅

𝑎− 𝑟𝑅
𝑏+(𝑏0)(𝑟𝑅

𝑏−𝑟𝑅
𝑎−1)

𝑟𝑅
𝑏(1−𝑟𝑏)

)  =  
𝑡0

𝑤0
  (

𝑟1𝑉
𝑎− 𝑟1𝑉

𝑏

𝑟1𝑉
𝑏(1−𝑟1𝑣) 

) + 𝛽𝑣 (
𝑟1𝑉

𝑎−1−𝑟1𝑉
𝑏

𝑟1𝑉
𝑏 (1−𝑟1𝑉)

) − 𝑀 (
𝑟1𝑣

𝑎− 𝑟1𝑣
𝑏+(𝑏0 )(𝑟1𝑣

𝑏−𝑟1𝑣
𝑎−1)

𝑟1𝑉
𝑏(1−𝑟1𝑉)

)             (18) 

Hence the steady state queue size probabilities of described model are expressed in terms of 𝑄0𝑊 then: 

 𝑄𝑛𝑊 =  𝑟1𝑉
𝑛 𝑄0𝑊             𝑛 ≥ 0                                                                    (19) 

 𝑃𝑛𝑅 = (𝐿𝑟𝑅
𝑛 +  𝑀 𝑟1𝑉

𝑛) 𝑄0𝑊        𝑛 ≥ 0                               (20) 

𝑅𝑛𝐼 =  [𝐿 (
1−𝑟𝑅−𝛽𝑅

1− 𝑟𝑅
) (

𝑟𝑅
𝑎−1−𝑟𝑅

𝑛

1−𝑟𝑅
𝑏 ) +  (𝑀 + 1) ((

1−𝑟1𝑉−𝛽𝑉

1− 𝑟1𝑉
) (

𝑟1𝑉
𝑎−1−𝑟1𝑉

𝑛

1−𝑟1𝑉
𝑏 )) +  

𝑟1𝑉
𝑎−1−𝑟1𝑉

𝑛

𝑟1𝑉
𝑏 (1− 𝑟1𝑉)

+  
𝑟1𝑉

𝑏−𝑟1𝑉
𝑎

𝑤0𝑟1𝑉
𝑏 (1− 𝑟1𝑉)

 ]  𝑄0𝑊   

0 ≤ 𝑛 ≤ 𝑎 − 1     (21)                                          

where; 

 𝐿 =  (
𝑟𝑅

𝑏(1−𝑟𝑏)

𝑟𝑅
𝑎− 𝑟𝑅

𝑏+(𝑏0)(𝑟𝑅
𝑏−𝑟𝑅

𝑎−1)
) [

𝑡0

𝑤0
  (

𝑟1𝑉
𝑎− 𝑟1𝑉

𝑏

𝑟1𝑉
𝑏 (1−𝑟1𝑉)

) + 𝛽𝑣 (
𝑟1𝑉

𝑎−1−𝑟1𝑉
𝑏

𝑟1𝑉
𝑏 (1−𝑟1𝑉)

) −

                                                                                                                         𝑀 (
𝑟1𝑉

𝑎− 𝑟1𝑉
𝑏+(𝑏0 )(𝑟1𝑉

𝑏−𝑟1𝑉
𝑎−1)

𝑟1𝑉
𝑏(1−𝑟1𝑉)

)] 

𝑀 =  
∑ 𝑟1𝑉

𝑘𝑏𝑡𝑘
∞
𝑘=0

𝛽𝑉
  =  

𝜆𝜂

𝛽𝑉(
𝜇𝑅

𝜆+ 𝜇 
− 

𝜇′𝑊𝑉
𝜆+ 𝜇′𝑊𝑉+𝜂

)
 (

𝜇𝑅

𝜆+ 𝜇𝑅−𝑟1𝑉
𝑏𝜇𝑅 

−  
𝜇′𝑊𝑉

𝜆+ 𝜇𝑅+𝜂−𝑟1𝑉
𝑏𝜇′𝑊𝑉 

 ) 

           𝑡0 =  
𝜂

𝜆+ 𝜇𝑅
 ;  ;    𝑤0 =  

𝜆

𝜆+𝜂+ 𝜇′𝑊𝑉
 ;  𝑏0 =  

𝜆

𝜆+ 𝜇𝑅
 

By using normalizing conditions, the value of 𝑄0𝑊  is calculated.  

                        (i.e.)      ∑ 𝑃𝑛𝑅 +∞
𝑛=0  ∑ 𝑄𝑛𝑊 +∞

𝑛=0  ∑ 𝑅𝑛𝐼
∞
𝑛=0 = 1          

Then              𝑄0𝑊
−1 = 𝐿 (ℎ(𝑟)) + ( 𝑅 + 1)ℎ (𝑟1) +  

1

𝑟1𝑉
𝑏(1− 𝑟1𝑉)

(
𝑟1𝑉

𝑏− 𝑟1𝑉
𝑎

𝑤0
+ (𝑟1𝑉

𝑎−1 −  𝑟1𝑉
𝑏))                           (22) 

Thus, the steady state queue size probabilities for the general arrival bulk service with types break down are given by 

𝑄𝑛𝑊 =  𝑟1𝑉
𝑛 𝑄0𝑤             𝑛 ≥ 0 

             𝑃𝑛𝑅 = (𝐿𝑟𝑅
𝑛 +  𝑀 𝑟1𝑉

𝑛)𝑄0𝑤       𝑛 ≥ 0 
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𝑅𝑛𝐼 =   [𝐿 (
1 − 𝑟𝑅 − 𝛽𝑅

1 −  𝑟𝑅

) (
𝑟𝑅

𝑎−1 − 𝑟𝑅
𝑛

1 − 𝑟𝑅
𝑏 ) +  (𝑀 + 1) ((

1 − 𝑟1𝑉 − 𝛽𝑉

1 −  𝑟1𝑉

) (
𝑟1𝑉

𝑎−1 − 𝑟1𝑣
𝑛

1 − 𝑟1𝑣
𝑏 )) +  

𝑟1𝑉
𝑎−1 − 𝑟1𝑉

𝑛

𝑟1𝑉
𝑏 (1 −  𝑟1𝑉)

+  
𝑟1𝑉

𝑏 − 𝑟1𝑉
𝑎

𝑤0𝑟1𝑉
𝑏  (1 −  𝑟1𝑉)

 ] 𝑄0𝑊                   0 ≤ 𝑛 ≤ 𝑎 − 1 

where 𝑄0𝑊 is determined using Eq 22. 

 

Performance measures: 

Mean Queue Length: 

The mean queue length 𝐿𝑞  of the model is as follows: 

𝐿𝑞 =  ∑ 𝑛𝑃𝑛𝑅 +∞
𝑛=0  ∑ 𝑛𝑄𝑛𝑊 +∞

𝑛=0  ∑ 𝑛𝑅𝑛𝐼
𝑎−1
𝑛=0  

By substituting  𝑃𝑛𝑅  ,  𝑄𝑛𝑊   𝑎𝑛𝑑  𝑅𝑛𝐼  we get: 

𝐿𝑞 =  [𝐿(ξ (r)) + (𝑀 + 1)(ξ (𝑟1 )) +  
𝑎 (𝑎−1)

2
(

𝑟1𝑉
𝑎−1−𝑟1𝑉

𝑏

𝑟1𝑉
𝑏 (1− 𝑟1𝑉)

+
𝑟1𝑉

𝑏−𝑟1𝑉
𝑎

𝑤0𝑟1𝑉
𝑏 (1− 𝑟1𝑉)

 )] 𝑄0𝑊                                      (23) 

where  ξ (x) =  
𝑥

(1−𝑥)2
+  

1−𝑥−𝛽𝑅

(1−𝑥)(1−𝑥𝑏)
 (

𝑎(𝑎−1)𝑥𝑎−1

2
+

𝑎𝑥𝑎(1−𝑥)−𝑥(1−𝑥𝑎)

(1−𝑥)2
)  and    𝑤0 =  

𝜆

𝜆+𝜂+ 𝜇′𝑊𝑉
 

Thus the mean queue length of GI/M(a,b)/1/ MWV with types of breakdown is derived. 

 

Sensitivity Analysis  

To evaluate the robustness and efficiency of queuing systems under varying operational conditions sensitivity analysis is a 

powerful tool. In this study we analyse the sensitivity of GI/M(a,b)/1 with multiple working vacations, where both regular and 

working vacation periods are subject to distinct break down mechanism. The arrival process follows general distribution with 

rate λ, while service time follows exponential distribution with rate 𝜇𝑅 during regular busy periods and 𝜇′𝑊𝑉  during working 

vacations. Server returns from the working vacation within an interarrival time is governed by the parameter η. Breakdown 

occurrences are modeled by parameters 𝛽𝑣 and 𝛽𝑅 corresponding to the failures during working vacation and regular busy periods 

respectively. The testing is performed in batches of size 𝑎 = 5, 6, 7, 8, 9, 10  upto a maximum batch size 𝑏 = 12 . Through 

numerical analysis, we examined how variations in the breakdown parameters influence the mean queue length. This analysis 

provides valuable insights into how the reliability of the analyser during working vacation and regular busy periods affects overall 

system congestion. The results assist in identifying optimal diagnostic laboratory configurations that results in maintaining the 

effective performance while minimizing the impact of breakdowns.  

 

Thus, for various values of  𝛽𝑣  𝑎𝑛𝑑 𝛽𝑅 , the mean queue length 𝐿𝑞 are tabulated and the values are shown in the Fig.1. By letting  

λ = 0.5 , 𝜇𝑅 = 0.7 , 𝜇′𝑊𝑉 = 0.4 and η = 0.2 and by varying batch size of “a” from 5 to 12 the values of 𝐿𝑞 are calculated and 

tabulated in Table 1. 

 

Table 1: Mean queue length for GI/M(a,b)/1/MWV with respect to  𝜷𝒗  𝒂𝒏𝒅 𝜷𝑹 

 

𝜷𝑹   
𝜷𝒗 0.01 0.02 0.03 

 

0.04 0.05 

0.005 24.87939 25.97134 28.06328 29.15523 29.52472 

0.006 40.16934 43.52708 43.72258 44.87372 47.51783 

0.007 62.76327 65.24755 66.86245 67.47735 68.09225 

0.008 83.15424 83.38954 84.22483 86.36013 89.49542 

0.009 102.5167 105.5337 107.6073 109.8677 112.8847 
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Fig. 1. 𝑳𝒒 with respect to 𝜷𝒗 𝒂𝒏𝒅 𝜷𝑹 

 

The Fig. 1. has been plotted for various values of  𝛽𝑣 – break down during working vacation ranging from 0.005 to 0.009 and for 

the values of 𝛽𝑅 – breakdown during regular busy period ranging from 0.01 to 0.05. From the graph it is observed that for fixed 

value of 𝛽𝑅  , the bar height increases as 𝛽𝑣 increases. This indicates that the queue length increases when the 𝛽𝑣  is higher even 

though 𝛽𝑅  is fixed. As 𝛽𝑅 increses across bar groups (left to right) all bars in each group grows taller, shows that 𝛽𝑅 has a strong 

impact on the patient samples waiting for testing in the queue. This is because higher breakdowns in regular busy periods directly 

reduce the effective service rate, and causing increase in queue length. From this one can conclude that the patient samples waiting 

for testing in the queue is positively correlated with breakdown during the regular busy period and the impact becomes more 

significant as the breakdown during working vacation increases. The graph depicts that the effective system performance depends 

on minimizing both types of breakdowns with special focus on regular busy period maintenance. 

 

RESULTS AND DISCUSSION 
The prescribed model incorporates General arrival under multiple working vacations with minimum batch size a from 5 to 10 and 

maximum batch size b is 12. In this model steady state equations and expected queue length is calculated for various breakdown 

parameter βv  and βR during working vacation and regular busy period respectively. From the results it shows that increasing the 

breakdown rate shows a significant increase in expected samples waiting for testing in the queue. Finally, the finding highlight 

how analyser failures in both busy and vacation modes significantly affects diagnostic laboratory performance. 

 

CONCLUSION 
This paper analyzes a comprehensive analysis of the GI/M(a,b)/1 with multiple working vacation with types of breakdowns 

occurring during working vacation and regular busy periods. Constructing and solving the embedded Markov chain at service 

completion at pre-arrival epochs steady state probabilities has derived. Performance measure such as expected patients’ samples 

waiting for testing in the queue length is calculated. A sensitivity analysis has been examined to note the impact of break down 

probabilities on diagnostic laboratory performance. Graphical representation of bar graph in 2D plots demonstrates that how 

breakdown parameters affect the entire diagnostic laboratory process queue length. In future the model can be extended to multi-

server laboratory environments to enhance the quality of laboratory.   
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