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ABSTRACT

This paper analysis a Non-Markovian queueing model applied to a diagnostic laboratory system, where patient samples arrive
according to a general distribution single server pattern with batch service where server undergoes multiple working vacations
with server breakdown. The laboratory begins processing only when at least “a” number of samples are available and can handle
up to a maximum of “b” samples per batch. The testing equipment described as a server may enter multiple working vacation
periods. Patient samples arriving follows General distribution and the service follows Exponential distribution. The breakdown
that may happens during working vacation periods or during regular busy periods are considered in this model. The system is
formulated through a discrete-time Markov chain at pre-arrival epochs. The steady state equation, steady state solution for the
described model are derived to determine key performance measures known as mean queue length. Finally, this paper computes
the numerical analysis of mean queue length with the types of breakdown to study how breakdown parameters influence
laboratory congestion and service reliability. The results offer practical insights for diagnostic centres to optimize maintenance
scheduling, batch processing, and equipment validity.

KEYWORDS: Batch service, Breakdown, General Arrival, Multiple working vacation, Regular busy period, Queue length,
Reliability.
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INTRODUCTION

In modern healthcare environments, particularly in diagnostic and medical laboratory systems, managing the efficient flow of
patient samples has become a critical operational challenge. Laboratories often receive unpredictable patient inflows from various
sources such as outpatient departments, emergency units, or external clinics. Delays in sample processing can lead to diagnostic
backlogs, delayed treatment decisions, and decreased patient satisfaction. Therefore, mathematical models that can effectively
capture the dynamic behaviour of such systems are essential for improving service efficiency and reliability. Queueing theory
provides a powerful analytical tool to study and optimize healthcare service processes involving randomness in patient arrivals,
testing times, and equipment reliability. Diagnostic centres typically process biological samples in batches. For example, blood
or biochemical samples are often analysed in groups using automated analysers to ensure cost-effective operation and reduce
chemical usage. Such a system can be effectively modelled as a batch service queue, represented as GI/M(a,b)/1, where arrivals
follow a general independent distribution (GI), and the service times are exponentially distributed (M). The parameters “a” and
“b” represent the minimum and maximum batch sizes, respectively, that the analyser can process at one time. When fewer than
“a” number of samples are waiting, the equipment remains idle or enters a state of reduced service capacity known as working
vacation.

In a practical laboratory setting, testing machines do not always function continuously at full speed. Periods of lower workload,
staff shortages, or scheduled maintenance often lead the equipment to operate at a reduced service rate, while still processing
some samples. This scenario corresponds to queueing theory is known as a working vacation. During such periods, the analyser
is not completely idle but continues to serve samples more slowly than usual. When multiple such reduced-capacity periods occur
consecutively, the system is said to experience multiple working vacations (MWV). This concept accurately reflects real-life
diagnostic environments where analysers periodically enter maintenance before resuming normal operation.

In addition to working vacations, breakdowns represent another major source of service disruption in healthcare diagnostics.
Equipment failures can arise due to overuse, reagent shortages, software errors, or calibration faults. These breakdowns may
occur during either regular busy periods or working vacation periods. Both types of breakdowns reduce the effective testing rate,
increase the sample queue, and impact patient waiting times. Proper modelling of these interruptions is necessary for laboratory
administrators to design preventive maintenance strategies and minimize overall service downtime.

To represent these realistic laboratory processes, this study proposes and analyses a GI/M(a,b)/1 queueing model with multiple
working vacations and two types of breakdowns B, and By . The model captures both the batch nature of diagnostic testing and
the stochastic nature of interruptions. A discrete-time Markov chain approach is used at the pre-arrival epoch to derive steady-
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state probabilities for the system’s various operational states known as regular busy, working vacation, idle, and breakdown.
Using these probabilities, key performance measures such as mean queue length (Lq), server utilization, and system reliability
are obtained.

Furthermore, a numerical sensitivity analysis is carried out to examine how varying breakdown parameters B, and By influence
system behavior. The proposed model thus serves as a realistic analytical framework for healthcare managers and diagnostic
centre operators. It enables quantitative evaluation of operational strategies such as adjusting batch sizes, optimizing maintenance
frequency to minimize waiting times and improve testing efficiency. The study can further be extended to multi-server laboratory
environments to enhance the quality of laboratory.

REVIEW OF LITERATURE

Queuing theory has been widely applied in modelling and analyzing systems where resources are shared among competing users
such as computer networks, manufacturing systems, and service facilities. Telecommunication systems with packet transmission,
Manufacturing systems with Batch Processing and Maintenance, Health care systems with Multiple Patient services are some of
the real-life examples of the described model. Several studies have analyzed G1/M(a,b)/1 queues with bulk services.

The concepts of batch queue were first introduced through the research of Bailey (1954) [1]. The general bulk service rule was
pioneered by Neuts (1967) [2] with Poisson arrival and general service time distribution. Easton G.D and Chaudhry M L (1982)
[3] discussed about Ex/ M (a,b)/1 queueing system and its numerical analysis. Chaudhry M. I and Templeton J.G.C (1983) [4]
discussed A first course in bulk queuing. Choi and Han (1994) [5] analyzed the GI/ M (a,b) / 1 queue with multiple vacations.
Servi. L.D and Finn S.G (2002) [6] have assessed M/M/1 queues with working vacations (M/M/1/WV). Non-Markovian Queuing
Systems was discussed in Stochastic Models in Queuing Theory by Medhi (2003) [7].

William J. Gray (2004) [8] developed Queuing Model with Multiple Types of Server Breakdown. G1/M/1 working vacation model
was examined by Baba (2005) [9]. Tian, Li and Zhang (2007) [10] provided a survey results of working vacation queues. Gross,
D. and Harris, C.M (2008) [11] have proposed fundamentals of queuing theory. Zhang and Xu (2008) [12] have examined the
M/M/1 queue with multiple working vacation. Julia Rose Mary and Afthab Begum (2009) [13] have analyzed the Markovian
M/M(a,b)/1 queuing model under multiple working vacation and derived the steady state probability distribution and mean queue
length for the model. Ghimere R.P and Ghimire S (2011) [14] studied heterogeneous arrival and departure M/M/1 queue with
vacation and service breakdown.

Sushil Ghimire, R.P. Ghimire, Gyan Bahadur Thapa (2015) [15] examined the Mathematical models of the M"M/1 bulk arrival
queuing system. Steady state analysis of M/M (a,b)/ MWV/BR queuing model was studied by Rajalakshmi, Pavithra, Julia Rose
Mary (2016) [16] . Gopinath Panda, Abhijit Datta Banik and Dibyajyoti Guha (2018) [17] assessed Stationary Analysis and
optimal control under multiple working vacation policy in a GI/M(a,b)/1 queue. Extended analysis and computationally efficient
results for the GI/ M(a,b)/1 queuing system was analysed by Samanta S.K Bank.B (2020) [18]. Praveen Kumar Agarwal, Anamika
Jain, Madhu Jain (2021) [19] have proposed M/M/1 Queuing Model with Working Vacation and Two Types of Server
Breakdown.

Mohan Chaudhry and jing Gai (2022) [20] proposed analytic and computational analysis of GI/M(a,b)/c queuing system. A.N.
Dudin, S.R. Chakravarthy, S.A. Dudin, O.S. Dudina (2023) [21] studied Queueing System with Server Breakdowns and
Individual Customer Abandonment. Sundrapandian. S and Nandhini.S (2024) [22] developed the sensitivity analysis of a non-
Markovian feedback retrial queue, reneging, delayed repair with working vacation subject to server breakdown. Lydia P and
Julia. K (2024) [23] analyzed the performance of M/M(a,b)/1/MWYV Queuing Model with the Busy Period Breakdown. Yi Zheng,
Juxihong Julaiti, Guodong Pang (2024) [24] documented Adaptive Service Rate Control of an M/M/1 Queue with Server
Breakdowns. This study extends the existing model of general arrival with batch service by developing the steady state analysis
of GI/M (a,b)/ 1 queue with multiple working vacation and types of break down.

This study extends the existing model of general arrival with batch service by developing the steady state analysis of GI/M (a,b)/
1 queue with multiple working vacation and types of break down.

METHODOLOGY

In this model the in the diagnostic laboratory process the analyser acts as a server that processes the patients samples in batches
according to the general bulk service rule (GBSR) introduced by Neuts (1967). This rule states that analyser starts service only
when there is at least “a” number of samples are in the system and maximum service capacity is “b” samples in a single batch.
Regular service follows exponential distribution and it is denoted by the parameter ugg. After completing each service if the
server finds at most “b” number of samples in the system then the server takes all “b” samples in a single batch to serve. If the
analyser finds more than “b” then it takes first “b” number of samples as first batch for service. Thus, the service time of batches
of size “k” (a < k< b) is assumed to be independent identically distributed. If there are less than “a” number of samples in the
system then the server takes vacation. During vacation if the server finds the laboratory with more than “a” number of samples
then the analyser starts the service with lower service rate 1’y which follows exponential distribution. The analyser repeats
another working vacation if it finds less than “a” number of samples in the laboratory (i.e) multiple working vacation which is
exponentially distributed and is assumed to be 1. In this model the arrival is assumed to follow General distribution with the
parameter A. The model is considered for the server breaking down during working vacation and regular busy period which follow
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Poisson distribution with a parameter 8, and B respectively. With the help of the above parameters, the model is analysed
under Discrete-Time Markov Chain pre-arrival epoch and there by Mean queue length is also derived.

Let t,= 1,2, 3, 4... be the arrival time of the n " number of samples. If arrival stream is empty then t,= 0. The inter arrival times
{t,,n=1,2,3,4....} are in-dependent and identically distributed with a general distribution function G(t) with mean 1/ and the
Laplace Stieltjes Transform of G(t) is denoted by G*(0) where 6 > 0. Let N, (t), be the number of patients samples waiting for
testing in the queue at time t and Jn(t) = 0, 1, 2 where server is in idle vacation, working vacation and regular busy period
respectively. In this model the process {(Nq (t - 0), Jn); n > 1} is an embedded Markov chain with state space C={(n>0); J=1,2}
U {0 <n<a-1; J=0}.

The steady state queue size probabilities at a time t are defined by
PTLR(t) :’llm Pr{Nq (tk - 0) =n, ]n = 1}! nzo

QnW(t) :,ym PT{Nq (tk - 0) =n, ]n = 2}' n=0

R, (1) zllim Pr{Nq(t, —0) =n, J, =0}, 0<n<a-1

Assuming the steady state probabilities of P, g, @,y andR,,; exist and denoted as the analyser is in regular busy period, in working
vacation period and in idle period respectively. Then

Pag= lim P (£); Quuy = lim Quuy (£); Ry lim Ry (8)

During working vacation and regular busy period there will be n number of patients samples waiting for testing in the queue and
the system has k (a <k < b) samples in service, whereas in idle period the number of samples waiting for testing in the queue and
in the system are same.

Let b, denote the probability that k batches are served at regular service rate as pgg in an inter arrival time. Then
t k
by = fe-ﬂRf %da(t) k>0

0
We define wy, be the probability that working vacation time is greater than an interarrival time and the service completion of k —
batches occur at a rate u'y,, in an inter-arrival time. Then

_ —nt (e v (W yy )"
we= | e o

0
Taking t;, as the probability that the server returns from vacation in an inter arrival time and k service completions occur in an
inter arrival time. Then
® , t _k—i
te= [ Elo{fy e Lo emwwy ¥ 7(““(5_;)‘?) e HRBE=D) dx} dG() k>0
Suppose d,, indicates the probability that the analyzer gets breakdown at the rate of 8, during working vacation period. Then

dG(t) k=0

t k
dy = f e bt % dG(t), k=0
) !
Assuming e, represents the probability that the analyzer gets breakdown at the rate of 8 during regular busy period. Then
t k
ey = fe‘BRt % dG(t), k=0

0
By considering the above probabilities steady state equations are written and by applying the displacement between the state of
Markov chain the steady state solution at pre - arrival time are calculated.

Steady State Equations:
During Idle Period:

oo k oo k
Ru = Ronay + D Qupsnca(l= D i+ 6+ dD)+ ) Pepnos (1= ) (b + €)
k=0 i=0 k=0 i=0

1<n<a-1(1)
Ror = Xg=1 ?53—1 Que-1yp+j (1 — Low + 6 +d) + X, ?;3—1 Ple—pyp+j (1 — obi +e))) + Rig-1y (1= (to+wp)) (2
During Working Vacation Period:

Quw = Zi=0 Quvn-1 Wi + di) nx1 3)
ow = Zier Zoca-1 Qu—1yp+j Wi + di) + Ramq ;W 4
During Regular Busy Period:
Pogr = Y=o Prvan-1(bx + ) + Xg=o Qupin-1 (tx ) n=1 Q)
Por = Nieq X0Zac1 Pae—nyp+j (b + @) + Tiey X9=a—1 Que=1yp+j (tk ) + Raz14to (6)

With the aid of the steady state equation, steady state solution is derived.
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Steady State Solution:
To obtain steady state solution we use forward shifting operator E on P,z and Q,,, as

E(Ppr) = Ppprand E(Qnw) = Qnyt
Thus, the Eq (3) gives the homogeneous equation:

(E—= YPoE* W+ d)) Quw =0, n 20 @
And the Eq (5) gives the non- homogeneous equation:
(E— ZRoE¥ (b + ec)) Pip = Zitzo Quvn (ti) n=0 (8)

To obtain P,z , Qu ,and R,,;, let us assume B(z?),W (z?), D(z?) and E(z”) respectively to denote Probability Generating
Function of b, ,w;, d, and e, then we have:

B(z") = Yo bk 2 = G*(ugp(1—2")) )
W(z?) = T owi 252 = G*(n + 1 (1 = 2°)) (10)
D(z") = Xi=o di 2" = G*(n + B,(1 = 2")) (11)
E(z") = ¥i e 2" = G*(Br(1 — 2")) 12)

Ifp= (biu) < 1, then the equation z= B (z) has a unique root 5 inside (0,1). This result follows from the corresponding result

of GI/M/1 model of Gross and Harris (1985), B( 73°) = 1 with 0< rg< 1.
If 1) > 0 then the equation G*(n + 'y (1 — 2 )) has a unique root ry,, in the interval (0,1), (i.e) W (ry,?) = 1y, with 0< 1y,
<1.
If B,and PBgarein (0,1), then the equation D(z”) = zand E(z”) = z have unique roots such as 7,4, and 7z lie inside (0,1)
respectively.
Hence the homogeneous difference Eq (7) has a solution

Quw = Tiv" Qow n=0 (13)
And the non-homogeneous difference Eq (8) has a solution
P =(Lrg"+ M1y™) Qow n 20 (14)

_ T(rw?
Where M = r1y=B(r1?)-D(ri?)-F (riv?
and Try,” = Yoyt = M(ry — B (ry”) = D(ryy”) = F (ry?) (15)
[ee) T m
Thus P,z = [LTRn + Epo iy tk)—T1V—B(T1;Z)—D(T1Vb)] Qow Wherer,, #1p (16)
The expression R,,; is obtained by substituting Q,,;, and P,r from Eq (13) & (14)
_ 1-rr—BR\ (TRY -rR 1-r1y—Bv (Tiv® -rv" Ty l-rp™ riyP-riy®

Ry = [L( 1-7g )( 1-rgP ) + MM+ 1) (( 1-711y )( 1-ry? )) + riv? (1-r1y) + woryy? (1_T1V):| Qow
0<n<a-1 (17)
Thus, the steady state queue size probabilities are expressed in terms of Q,,, and L.
Now L can be determined by substituting Q,,; and P, in Eq (6):

Thus

TRY- TRb+(bo)(TRb—TRa_1)) _ to (T1V -rw? ) (T1V —T1Vb) _ (Twa— 1P +(bo )(wa—”wa_l))
L ( rRP(1-1p) T wo \rpyP-ry) By rv? (1-r1y) M rivP(1-r1y) (18)
Hence the steady state queue size probabilities of described model are expressed in terms of Q,,, then:

QnW = 1" Qow n=0 (19)
Ppp=(Lrg" + M1y™) Qow n =0 (20)
1-rRr—BRY (TR® —TR 1-11y=Bv (Tv* ' -ry" Tyl -y riv’-riy

Rnl - L( 1-7R )( 1—rR )+ (M + 1) (( 1-711p )( 1—T1Vb )) + riv? (1-r1y) + woryy? (1- T1V)] QOW
0<n<a-1 (21)
where;

_ ( rrP(1-7p) ) [t_o ( riy®—ray? ) B (T1V —T1Vb) _

T \rR®-rRP+ o) (rRP -1 ) ) Llwo  \riy? (1-r11) Y \ryyb (1-r1)

M (T1va— r1vP+(bg )(T1vb—r1va_1))]
rPA-riy)

M = ZRorw*Pte _ n ( HR _ Hwv )

- - !

By By (ﬁi—%) A+ up—rvPur A+ pptn-rivbuwy
w1
__n .. _ 1 . _ _A
to = A+ug’ Wo = Mntpngy ' 0T Atug

By using normalizing conditions, the value of Q,,, is calculated.
(ile)  XpioPnr + Xn=oQnw + Zn=oRm =1 .
Then Qow " =L (A() + (R +Dh (1) + rwb(j_ — (m V;o“Va + ("t = 1) 22)
Thus, the steady state queue size probabilities for the general arrival bulk service with types break down are given by
Quw = Tv" Qow nz0
Ppp = (L™ + M11y™)Q0y 120
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1—15 — 1R — 1™ 1—1yy — ry® =1, ry® =1

R, = L( R BR)( R bR )+ M+1) ( v BV)( v bw ) n 1Vb v
1-rn 1—1g 1—-rny 1—-ry iy’ (1— 1y)

Tlvb_ﬁva

woryy? (1= 1)
where Qo is determined using Eq 22.

]QOW 0<n<a-1

Performance measures:

Mean Queue Length:

The mean queue length L, of the model is as follows:
L, = Y=o MPpg + Yo nQnyw + Z%;é Ry,

By substituting P,z , Qv and R,; we get:

(a-1) (v t-ryy? rivP-r®
L=[L )+ M+ 1D(E))+ = ( + )] 23
0= [LE@)+ 0+ D 00) + <SR (Tt R o (23)
_ x 1-x—BRr a(a-1)x%~ ax?(1-x)—x(1-x )) _ A
where & (x) = 1-x?2  (1-x)(1-xb) ( 2 (1-x)? and - wo = A+n+ pwy

Thus the mean queue length of GI/M(a,b)/1/ MWV with types of breakdown is derived.

Sensitivity Analysis

To evaluate the robustness and efficiency of queuing systems under varying operational conditions sensitivity analysis is a
powerful tool. In this study we analyse the sensitivity of GI/M(a,b)/1 with multiple working vacations, where both regular and
working vacation periods are subject to distinct break down mechanism. The arrival process follows general distribution with
rate A, while service time follows exponential distribution with rate ug during regular busy periods and u',,, during working
vacations. Server returns from the working vacation within an interarrival time is governed by the parameter 1. Breakdown
occurrences are modeled by parameters S, and B corresponding to the failures during working vacation and regular busy periods
respectively. The testing is performed in batches of size a =5,6,7,8,9,10 upto a maximum batch size b = 12 . Through
numerical analysis, we examined how variations in the breakdown parameters influence the mean queue length. This analysis
provides valuable insights into how the reliability of the analyser during working vacation and regular busy periods affects overall
system congestion. The results assist in identifying optimal diagnostic laboratory configurations that results in maintaining the
effective performance while minimizing the impact of breakdowns.

Thus, for various values of g, and By , the mean queue length L, are tabulated and the values are shown in the Fig.1. By letting
A=05,uz =07, 'yy = 0.4 and 1 = 0.2 and by varying batch size of “a” from 5 to 12 the values of L, are calculated and
tabulated in Table 1.

Table 1: Mean queue length for G1/M(a,b)/1/MWV with respect to B, and By

Br
By 0.01 0.02 0.03 0.04 0.05

0.005 24.87939 | 25.97134 28.06328 | 29.15523 | 29.52472

0.006 40.16934 | 43.52708 43.72258 | 44.87372 | 47.51783

0.007 62.76327 | 65.24755 66.86245 | 67.47735 | 68.09225

0.008 83.15424 | 83.38954 84.22483 | 86.36013 | 89.49542

0.009 102.5167 | 105.5337 107.6073 | 109.8677 | 112.8847
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Fig. 1. L, with respect to 8, and B

The Fig. 1. has been plotted for various values of g, — break down during working vacation ranging from 0.005 to 0.009 and for
the values of B, — breakdown during regular busy period ranging from 0.01 to 0.05. From the graph it is observed that for fixed
value of 8, , the bar height increases as f3,, increases. This indicates that the queue length increases when the g, is higher even
though By is fixed. As 8 increses across bar groups (left to right) all bars in each group grows taller, shows that 85 has a strong
impact on the patient samples waiting for testing in the queue. This is because higher breakdowns in regular busy periods directly
reduce the effective service rate, and causing increase in queue length. From this one can conclude that the patient samples waiting
for testing in the queue is positively correlated with breakdown during the regular busy period and the impact becomes more
significant as the breakdown during working vacation increases. The graph depicts that the effective system performance depends
on minimizing both types of breakdowns with special focus on regular busy period maintenance.

RESULTS AND DISCUSSION

The prescribed model incorporates General arrival under multiple working vacations with minimum batch size a from 5 to 10 and
maximum batch size b is 12. In this model steady state equations and expected queue length is calculated for various breakdown
parameter 8, and Bg during working vacation and regular busy period respectively. From the results it shows that increasing the
breakdown rate shows a significant increase in expected samples waiting for testing in the queue. Finally, the finding highlight
how analyser failures in both busy and vacation modes significantly affects diagnostic laboratory performance.

CONCLUSION

This paper analyzes a comprehensive analysis of the GI/M(a,b)/1 with multiple working vacation with types of breakdowns
occurring during working vacation and regular busy periods. Constructing and solving the embedded Markov chain at service
completion at pre-arrival epochs steady state probabilities has derived. Performance measure such as expected patients’ samples
waiting for testing in the queue length is calculated. A sensitivity analysis has been examined to note the impact of break down
probabilities on diagnostic laboratory performance. Graphical representation of bar graph in 2D plots demonstrates that how
breakdown parameters affect the entire diagnostic laboratory process queue length. In future the model can be extended to multi-
server laboratory environments to enhance the quality of laboratory.
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