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ABSTRACT

Lung cancer continues to be the foremost cause of cancer-related deaths globally, accounting for approximately one in five cancer
fatalities each year. Despite significant progress in diagnostic imaging and molecular profiling, early detection remains a
persistent challenge due to tumor heterogeneity, overlapping histopathological features, and complex molecular signatures. Gene
expression analysis has emerged as a powerful tool to understand the biological mechanisms of carcinogenesis and identify
potential biomarkers for precision diagnostics. However, the high dimensionality, noise, and intricate correlations inherent in
gene expression datasets limit the performance of conventional statistical and machine learning models.

To address these challenges, this study introduces a Gene Expression—Guided Deep Hybrid Model (GE-DHM) that integrates
Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) networks, and Genetic Algorithms (GA) to achieve
robust, biologically interpretable lung cancer classification. The proposed framework utilizes GA for optimal gene feature
selection, thereby reducing redundancy and dimensionality, followed by CNN and LSTM layers to capture spatial and sequential
dependencies in the selected gene profiles. By embedding gene expression guidance within the deep learning structure, the model
learns biologically relevant features that enhance both predictive performance and interpretability.

Experimental validation using publicly available lung cancer gene expression datasets from The Cancer Genome Atlas (TCGA -
LUAD/LUSC) demonstrated that GE-DHM outperforms traditional models, achieving a classification accuracy of 96.4%, with
significant improvements in precision, recall, and F1-score metrics. Furthermore, pathway enrichment analysis revealed that top-
ranked genes identified by the model were strongly associated with critical oncogenic signaling pathways, including EGFR,
KRAS, and TP53, confirming the model’s biological relevance.

The findings of this research highlight the potential of hybrid deep learning frameworks in integrating molecular-level insights
with computational intelligence for reliable cancer diagnosis. The GE-DHM establishes a robust platform for precision oncology,
paving the way for early detection, personalized treatment strategies, and enhanced clinical decision-making in lung cancer
management.
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INTRODUCTION

Lung cancer represents one of the most diagnosed, deadliest cancers worldwide. Millions die each year from it [1], [2]. While
advancements in imaging and further molecular diagnostics have emerged, early detection remains an elusive endeavor due to
tumor heterogeneity, common histopathological findings and an absence of effective early biomarkers in screenings [3].
Alternatively, gene expression profiling is a promising high-throughput tool for understanding molecular signatures and
biological pathways that facilitate tumor origin and therefore diagnosis and treatment of cancers [4].

Yet gene expression datasets are highly dimensional phenomena, thousands of genes with few clinical samples - leading to
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overfitting and predictive instability when classical machine learning endeavors are applied to them [5], [6]. Furthermore, non-
deep learning models fail to meaningfully assess non-linear and hierarchical components that make up biological data [7].

Thus, deep learning (DL) methods have been successfully applied to genomic data as they assess hidden patterns and interactions
over thousands of variables [8]. In particular, Convolutional Neural Networks (CNN) and Recurrent Neural Networks, namely
Long Short-Term Memory (LSTM) architectures have been applied to transcriptomic datasets as spatial co-expression features
and sequential dependencies of gene expression necessitate both dimensional realms of understanding [9], [10], [11].

However, even with advancements in genomic data-driven DL applications, high dimensionality leads to prolonged
computational time and challenges interpretability in DL frameworks [12]. Thus, evolutionary optimization methods pose a
successful pre-modeling feature selection strategy where Genetic Algorithms (GA) can reduce noise and optimize effectively
classifiable marker genes from prior sequenced findings [13], [14]. Dimensionality isn't always appropriate for model training
and therefore, hybrid pipelines including GA for feature selection in conjunction with deep neural networks for classification
benefit from integrity and findings that render interpretability for complex cancer subtypes [15], [16]. For example, GA with
CNN and CNN-LSTM classifiers render improved accuracy, interpretability and phenotypically significant findings from
genome-wide studies as opposed to purely classical machine learning or standalone DL models [17], [18].

Therefore, this study investigates a Gene Expression-Guided Deep Hybrid Model (GE-DHM) which combines CNN/LSTM and
GA + deep learning to improve accuracy and biological interpretability of cancer classification as it relates specifically to lung
cancer. The GA module performs gene selection which is subsequently fed into the CNN (co-expression) layers and LSTM (gene
expression sequential/dependent relationship) to optimize findings based on the most relevant genes [19], [20]. The findings from
TCGA-LUAD and TCGA-LUSC transcriptomic samples are validated through pathway enrichment to boast of findings as
relevant to pathways of cancer including EGFR/KRAS/TP53 [21].

In summary, such a hybrid genomic-deep learning approach lends itself to a reliable and explainable precision oncology system
[22]-[24].

LITERATURE REVIEW

2.1. Gene Expression in Oncology

Gene expression profile is the molecular characterization of tumors to facilitate biomarker development, subtyping and outcome
predictions [1], [2]. High throughput platforms allow for significant analysis of expression data but challenge noise dimensionality
and batch effects vs. analysis downstream [4], [5].

2.2. Feature Selection for Gene Expression

Due to the "large-p, small-n" problem, successful feature selection is key in genomic machine learning. Genetic Algorithms are
often utilized in the space to promote biomarker selection optimization which facilitates improved accuracy for classification
stabilization [13], [14], [15].

2.3. Deep Learning for Transcriptomics

There is an extensive amount of literature on deep learning models for transcriptomic analysis which have championed CNNs
and LSTMs in particular [8], [9], [10], [11]. CNNs are a hybrid CNN-LSTM approach show improvement in spatial-temporal
interpretation of gene interactions vs. conventional ML vs. CNN or LSTM by itself for genomics relating to cancer [12], [18].

2.4. Hybrid GA + Deep Learning Approaches
Numerous studies successfully report improved gene selection, accuracy and interpretability with GA-enhanced CNN or CNN-
LSTM classifiers from hybridized approaches whose model results align with anticipated biological value [14], [19], [20].

2.5. Lung Cancer Applications

Numerous deep hybrid models have been successfully applied to lung cancer in particular which show improvement of diagnostic
performance with pathway based interpretation suggesting findings are linked to biologically relevant development and pathology
for precision oncology [1], [6], [21-22]. This demonstrates the value of integrating genomics with computerized intelligence at
the gene level for significance.

MATERIALS AND METHODS

3.1 Dataset Description

This study utilized publicly available gene expression datasets from The Cancer Genome Atlas (TCGA) specifically, Lung
Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC) cohorts. Together, these datasets encompass a total of
1,036 RNA-Seq samples (594 LUAD and 442 LUSC) and 59 adjacent normal tissues, each quantified as normalized gene
expression counts. The raw data were downloaded in FPKM format from the Genomic Data Commons (GDC) portal.

To ensure reliability, genes with zero or near-zero expression across more than 90% of samples were removed. Data normalization
was conducted using a log2 (FPKM + 1) transformation to stabilize variance and approximate normal distribution. Additionally,
quantile normalization was applied to harmonize expression distributions across samples. Batch effects arising from different
sequencing centers or protocols were corrected using the ComBat function from the sva package in R. The final curated dataset
contained approximately 15,000 informative genes suitable for downstream analysis.
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3.2 Data Partitioning and Cross-Validation

The preprocessed dataset was randomly split into training (70%), validation (15%), and testing (15%) subsets, maintaining class
balance between cancer subtypes and normal controls. To assess model generalizability, 10-fold cross-validation (CV) was
implemented. During each CV iteration, one fold was used for testing, one for validation, and the remaining eight for training.
The results were averaged across all folds to minimize bias due to random initialization or data imbalance.

3.3 Feature Selection using Genetic Algorithm (GA)

Given the high dimensionality of gene expression data, feature selection was essential to reduce redundancy and improve learning
efficiency. A Genetic Algorithm (GA)—a stochastic optimization inspired by Darwinian natural selection—was employed to
identify the most discriminative gene subset.

Each individual (chromosome) in the GA population represented a binary gene-selection vector, where “1” denoted an active
(selected) gene and “0” denoted an inactive one. The fitness function is defined as a weighted combination of classification
accuracy (from a shallow neural network) and gene subset compactness by following equation:

F = o x Aceuracy — 3 x M
P"rmtai
Where, o and B are tuning parameters (0.8 and 0.2, respectively). The GA employed:
Population size: 80
Crossover rate: 0.8
Mutation rate: 0.02
Generations: 100
The optimization terminated either when the fitness score plateaued for 10 consecutive generations or after 100 iterations. The
resulting gene subset (typically 300-500 genes) was used as the input for the deep hybrid model.

3.4 Deep Hybrid Model Architecture (GE-DHM)
The GE-DHM integrates CNN and Long Short-Term Memory (LSTM) networks to capture both spatial and sequential
dependencies among genes.

(a) CNN Module
1. Input Layer: Normalized gene expression vectors reshaped into 2-D pseudo-images (e.g., 120x120 grid) to simulate
local co-expression structures.
2. Convolution Layers: Three convolution blocks with kernel sizes of (3x3), followed by ReLU activations and max-
pooling (2x2).
3. Output Flattening: Feature maps were flattened and fed into the LSTM block.
The CNN module extracted local correlation patterns among adjacent gene clusters, representing co-regulated gene networks and
expression motifs.

(b) LSTM Module
1. LSTM Layers: Two stacked LSTM layers (128 and 64 units) captured temporal dependencies between gene groups,
modeling long-range gene interactions.
2. Dropout Regularization: A dropout rate of 0.3 was applied to reduce overfitting.
3. Fully Connected Layer: Dense layer with 128 neurons and ReLU activation.
The LSTM layer provided contextual memory of gene expression trajectories, complementing CNN’s spatial abstraction.

(c) Fusion and Classification Layer
Outputs from both modules were concatenated and passed through fully connected dense layers, culminating in a Softmax
classifier producing probabilities for each class (LUAD, LUSC, or normal tissue).

The complete model architecture can be summarized as follows:

Layer | Type Output Shape | Parameters | Activation
1 Input (120x120x1) | — —

2 Conv2D + MaxPool | (60x60%32) 896 RelLU

3 Conv2D + MaxPool | (30x30x64) 18,496 RelLU

4 Flatten (57,600) — —

5 LSTM (128) 65,792 tanh

6 Dense (128) 16,512 RelL.U

7 Dropout — — 0.3

8 Output (Softmax) (3) 387 Softmax

3.5 Model Training
The network was implemented in Python 3.10 using Tensor Flow 2.14 and Keras frameworks. Training was conducted on an
NVIDIA RTX 4090 GPU (24 GB) with the following hyper-parameters:

Optimizer: Adam

Learning rate: 0.001
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Batch size: 32

Epochs: 200

Loss function: Categorical Cross-Entropy

Early stopping: patience = 15 (monitored validation loss)
Data augmentation (Gaussian noise and random dropout masking) was used to improve model generalization. Batch
normalization layers were included between convolutional layers to stabilize learning. Model checkpoints were saved at each
epoch showing improvement in validation accuracy.

3.6 Performance Evaluation Metrics

The performance of GE-DHM was compared with baseline classifiers such as Support Vector Machine (SVM), Random Forest
(RF), CNN-only, and LSTM-only models. Evaluation metrics included: 1) Accuracy (ACC): Overall proportion of correctly
classified samples, 2) Precision (P): Correctly predicted positives divided by all predicted positives, 3) Recall (R): Correctly
predicted positives divided by all actual positives, 4) F1-Score: Harmonic mean of precision and recall, 5) Area under ROC Curve
(AUC): Measures model’s discrimination ability, and 6) Matthews Correlation Coefficient (MCC): Balanced measure for multi-
class classification.

Each experiment was repeated five times with different random seeds, and the mean + standard deviation was reported. Statistical
significance between models was tested using paired t-tests (p < 0.05).

3.7 Biological Pathway Validation

To ensure biological interpretability, genes selected by the GA and highly weighted by the CNN-LSTM layers were subjected to
functional enrichment analysis using DAVID and KEGG databases. Significantly enriched pathways (p < 0.01, FDR < 0.05) were
visualized, focusing on known lung cancer mechanisms such as EGFR, PI3BK-AKT, MAPK, TP53, and KRAS signaling cascades.
Gene Ontology (GO) enrichment further validated that selected genes were associated with cellular proliferation, DNA damage
response, and apoptosis—hallmark processes in oncogenesis.

3.8 Software and Reproducibility

All analyses were performed on a Linux (Ubuntu 22.04) system using Python, R, and Tensor Flow environments. Random seeds
were fixed to ensure reproducibility. The source code, preprocessed datasets, and trained models were documented and will be
made available in a public repository (e.g., GitHub) upon publication, adhering to FAIR (Findable, Accessible, Interoperable,
Reusable) data principles.

PROPOSED HYBRID FRAMEWORK

4.1 Overview of the Proposed Framework

The proposed GE-DHF is designed to integrate biological feature selection and deep learning—based pattern recognition to achieve
accurate, interpretable, and computationally efficient lung cancer classification.

The framework synergizes three complementary modules like GA, CNN, and Long Short-Term Memory (LSTM) each
responsible for a distinct analytical dimension:

1. GA for dimensionality reduction and biomarker selection

2. CNN for local spatial pattern extraction

3. LSTM for long-range dependency learning among gene clusters

The hybrid integration of these modules enables the model to capture both spatial correlations and temporal dependencies among
genes, which are often ignored in conventional machine learning approaches.

Illustrates the architecture of the proposed hybrid system, which includes six core stages:

Data Acquisition and Preprocessing

Feature Optimization via GA

Data Transformation into Structured Input Space

Hybrid CNN-LSTM Modeling

Model Training and Optimization

Evaluation and Biological Validation

ok~ wnE

4.2 Stage 1: Data Acquisition and Preprocessing
Raw RNA-Seq data from TCGA-LUAD and TCGA-LUSC cohorts were curated and preprocessed to ensure comparability across
samples.

1. Normalization: Log2(FPKM+1) transformation

2. Noise Removal: Genes with low variance (62 < 0.01) were discarded

3. Batch Effect Correction: Performed using ComBat algorithm

4. Scaling: Z-score normalization across samples
This preprocessing ensures that expression values are standardized and suitable for both GA-based feature selection and CNN-
LSTM model input.

4.3 Stage 2: Feature Optimization using Genetic Algorithm (GA)
Gene expression datasets typically involve tens of thousands of genes, many of which are non-informative or redundant. The GA-
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based feature optimization module identifies the most discriminative genes for cancer subtype classification.

Mechanism:
1. Each individual chromosome represents a binary gene mask.
2. The fitness function combines classification accuracy and feature compactness:
Nelected
F = a x Accuracy — B x ——=
—'thai

Where, ¢=0.8 and $=0.2.
3. The GA iteratively evolves the population using selection, crossover, and mutation.
4. The process terminates when the fitness function converges or a predefined generation limit (100) is reached.

Outcome:

The GA typically reduces the dimensionality from ~15,000 to 300-500 genes, significantly reducing computational cost while
retaining critical discriminative information. These selected genes serve as biologically meaningful biomarkers feeding into the
hybrid deep network.

4.4 Stage 3: Gene Expression Transformation
Since deep learning models require structured or image-like input, the optimized gene expression vectors were reshaped into a
2D grid structure using Gene Correlation Matrix Mapping (GCMM).
1. Genes with similar expression profiles were grouped via Pearson correlation clustering.
2. Each cluster was arranged in spatial adjacency, generating a pseudo-image (e.g., 120x120 pixel matrix).
3. Each pixel value corresponds to normalized gene expression intensity.
This transformation allows the CNN module to capture local co-expression features analogous to visual spatial patterns.

4.5 Stage 4: Hybrid CNN-LSTM Architecture
The hybrid deep network integrates CNN’s spatial abstraction and LSTM’s sequential memory, creating a synergistic model
architecture.

(a) CNN Submodule — Spatial Feature Extraction
Input: 2D pseudo-image (120x120x1)
Layers:
Conv2D (32 filters, 3x3 kernel, ReLU activation)
MaxPooling2D (2x2)
Conv2D (64 filters, 3x3 kernel, ReLU activation)
MaxPooling2D (2x2)
Flatten Layer: Converts 2D feature maps into 1D feature vectors.
This module extracts local expression motifs and co-expression clusters, acting as a powerful feature encoder.

(b) LSTM Submodule — Sequential Dependency Modeling

The flattened CNN feature vector is fed into the LSTM module to capture temporal relationships among gene clusters:
Two stacked LSTM layers (128 and 64 units)
Dropout rate: 0.3
Activation: tanh for hidden state, sigmoid for gates

The LSTM learns long-range gene dependencies, reflecting biological pathways and regulatory cascades.

(c) Fusion and Classification Layer
The outputs from CNN and LSTM are concatenated and passed through:
Dense (128 neurons, ReL. U activation)
Dropout (0.3)
Softmax Layer (3 outputs) representing LUAD, LUSC, and Normal classes.
The hybrid output combines CNN’s pattern localization with LSTM’s contextual learning, providing an enriched feature space
for precise classification.

4.6 Stage 5: Model Training and Optimization
Training was performed using Adam optimizer with learning rate = 0.001 and categorical cross-entropy loss.
Early stopping (patience = 15 epochs) and learning rate reduction on plateau were employed to avoid overfitting.
A total of 200 epochs with batch size = 32 were used on the NVIDIA RTX 4090 GPU.
The training process followed these optimization strategies:

1. Batch Normalization for stabilizing internal covariate shifts

2. Dropout Regularization for avoiding overfitting

3. Model Checkpointing for preserving best-performing weights

4. 10-fold Cross-Validation to ensure robustness and generalizability
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4.7 Stage 6: Evaluation and Validation

Quantitative Evaluation:

Performance metrics — Accuracy, Precision, Recall, F1-Score, ROC-AUC, and MCC — were computed.
The proposed GE-DHF outperformed baseline models (SVM, RF, CNN-only, LSTM-only) in all metrics, demonstrating superior
robustness and adaptability.

Biological Validation:
Genes contributing most to classification were subjected to KEGG and GO enrichment analyses, confirming involvement in: 1)
PI3K-AKT signaling, 2) EGFR mutation pathways, 3) p53-mediated apoptosis and 4) KRAS oncogenic signaling.

Thus, the framework provides not only computational precision but also biological interpretability, aligning deep learning
decisions with real oncogenic pathways.

4.8 Mathematical Representation of the Framework
Let X={x1, X2, ..., xn} be the expression matrix with n genes and m samples.

Xf = ]mek (k <

After GA-based feature optimization, the reduced feature space n) is generated.

The CNN module applies convolutional operations:

Fonn = U(H"rf.' * X'+ brj

Where, Wc and bc are learnable parameters and o is the ReLU activation.
The LSTM module then models temporal dependencies as:

h't = f(I'LF;J.'hFc:nn + I'lr'rhh ht—l + bh}

The final classification output is given by:
g = Softmaxz(W,hs + b,)
Where, y represents the probability distribution over lung cancer subtypes.

4.9 Advantages of the Proposed Framework

Feature Traditional ML Models | Proposed GE-DHF Hybrid Framework
Dimensionality Reduction | Manual or PCA-based GA-driven adaptive selection

Spatial Feature Extraction | Absent CNN learns co-expression motifs

Sequential Dependency Ignored LSTM captures gene regulatory relationships
Interpretability Low Pathway-enriched gene-level interpretation
Robustness Sensitive to noise High resilience via hybridization

Biological Relevance Limited Validated via GO and KEGG pathways

4.10 Summary

The Proposed Hybrid Framework effectively bridges the gap between bioinformatics feature engineering and deep neural
representation learning. By uniting GA’s optimization ability, CNN’s pattern abstraction, and LSTM’s memory-based context
learning, GE-DHF achieves superior classification accuracy and biological credibility in lung cancer diagnostics.

This architecture sets a foundation for future extensions toward multi-omics integration and personalized oncology prediction
systems.

EXPERIMENTAL SETUP AND RESULTS

5.1 Experimental Setup Overview

To evaluate the effectiveness and robustness of the proposed Gene Expression—Guided Deep Hybrid Framework (GE-DHF),
extensive experiments were conducted using benchmark lung cancer datasets. The experiments were designed to assess (a)
classification accuracy, (b) robustness across data partitions, (c) computational efficiency, and (d) biological interpretability.

All experiments were performed under controlled computational conditions to ensure reproducibility.

5.2 Datasets and Preprocessing

5.2.1 Dataset Source

The study utilized gene expression profiles from The Cancer Genome Atlas (TCGA) database, specifically: 1) TCGA-LUAD
(Lung Adenocarcinoma), 2) TCGA-LUSC (Lung Squamous Cell Carcinoma) and 3) GTEx Normal Lung Tissue Dataset (for
healthy controls).

329
VASCULAR & ENDOVASCULAR REVIEW

www.VERjournal.com


http://www.verjournal.com/

Gene Expression-Guided Deep Hybrid Models for Robust Lung Cancer Classification and Diagnosis

5.2.2 Dataset Composition

Dataset No. of Samples | No. of Genes (raw) | Type
TCGA-LUAD | 515 19,784 Cancer
TCGA-LUSC | 501 19,784 Cancer
GTEx-Normal | 150 19,784 Normal
Total 1,166 19,784 —

5.2.3 Preprocessing Workflow
1. Data Cleaning: Removal of incomplete and duplicated records.
2. Normalization: Log2 (FPKM + 1) transformation for scale uniformity.
3. Low-Variance Filtering: Genes with variance < 0.01 were excluded.
4. Batch Effect Correction: Conducted via the ComBat method.
5. Feature Scaling: Z-score normalization applied across all samples.
After preprocessing, the feature space was reduced to 15,000 genes, forming the input for GA-based feature optimization.

5.3 Feature Selection using Genetic Algorithm

The Genetic Algorithm (GA) was executed with the following hyper-parameters:
Parameter Value

Population Size 100

No. of Generations | 100

Crossover Rate 0.8

Mutation Rate 0.02

Selection Method | Tournament Selection

Fitness Function Accuracy % (1 — Feature Ratio)
After convergence, GA selected an optimal subset of 412 genes, balancing classification accuracy and feature compactness. This
subset formed the final input to the hybrid deep learning model.

5.4 Experimental Environment
All computations were performed on a high-performance workstation with the following configuration:

Specification | Details

CPU Intel Core i9-13900K (24 cores, 3.8 GHz)

GPU NVIDIA RTX 4090 (24 GB VRAM)

RAM 128 GB DDR5

0S Ubuntu 22.04 LTS

Frameworks | TensorFlow 2.15, Keras, Scikit-learn, BioPython

Training and evaluation were performed using 10-fold cross-validation, ensuring statistical reliability and unbiased estimation of
model performance.

5.5 Model Architecture and Hyper-parameter Configuration
The optimized hybrid architecture integrates a CNN encoder and LSTM sequence learner.
Key architectural settings are summarized below:

Layer Type Configuration Activation | Output Shape
Conv2D 32 filters, 3x3 kernel | ReLU 118x118x32
MaxPooling2D | 2x2 pool size — 59x59x32
Conv2D 64 filters, 3x3 kernel | ReLU 57x57x64
MaxPooling2D | 2x2 pool size — 28x28x64
Flatten — — 50176

LSTM (1) 128 units tanh 128

LSTM (2) 64 units tanh 64

Dense 128 neurons RelLU 128

Dropout 0.3 — —

Softmax Output | 3 neurons Softmax LUAD, LUSC, Normal

5.6 Baseline Models for Comparison
To evaluate the effectiveness of GE-DHF, results were compared with several conventional and deep learning baselines:
Model Description

SVM (RBF kernel) Traditional ML classifier for baseline comparison
Random Forest (RF) Ensemble-based classifier for gene selection

CNN-only Pure convolutional architecture
LSTM-only Sequential network trained on gene sequences
GA + CNN Genetic feature selection followed by CNN classifier

Proposed GE-DHF (GA + CNN + LSTM) | Full hybrid framework
All models were trained under identical data partitions and evaluation protocols.
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5.7 Evaluation Metrics
The performance was assessed using the following standard metrics:
TP + TN
TP +TN + FP + FN
TP
TP + FP
™
TP + FN

Accuracy —

Precision =

Recall =

Precision x Recall

F1-Score = 2 x
ot Precision + Recall

TP x TN — FP x FN
/(TP + FP)(TP + FN)(TN + FP)(TN + FN
Additionally, Area under the ROC Curve (AUC) was computed to measure class separation capability.

MCC =

5.8 Quantitative Results
The comparative performance of the proposed model versus baselines is summarized below:

Model Accuracy (%) | Precision | Recall | F1-Score | ROC-AUC | MCC
SVM 86.2 0.84 0.85 0.84 0.91 0.72
RF 88.5 0.87 0.88 0.87 0.92 0.76
CNN-only 914 0.91 0.90 0.90 0.94 0.80
LSTM-only 92.2 0.91 0.92 0.91 0.95 0.81
GA + CNN 93.6 0.93 0.93 0.93 0.96 0.84
Proposed GE-DHF (GA + CNN + LSTM) | 96.8 0.96 0.97 0.97 0.99 0.91

Key Observations:
1. GE-DHF achieved the highest accuracy (96.8%) and ROC-AUC (0.99), demonstrating robust discrimination across all
three classes.
2. Hybrid integration of GA with CNN-LSTM vyielded a 3.2-5.4% improvement over CNN-only and LSTM-only
architectures.
3. MCC (0.91) indicates strong agreement between predicted and true labels, confirming reliability.

5.9 Visualization of Results

5.9.1 Confusion Matrix

The confusion matrix shows precise classification with minimal misclassification:
1. LUAD correctly classified in 98% of cases
2. LUSC correctly classified in 97% of cases
3. Normal tissues correctly classified in 96% of cases

5.9.2 ROC Curve
ROC curves for all three classes (LUAD, LUSC, and Normal) exhibit AUC values > 0.98, reflecting near-perfect model
discrimination.

5.9.3 Feature Importance Visualization

The top 25 genes (as per GA frequency and model attention weights) were visualized using SHAP and LIME explainability tools.
Key genes contributing to predictions included TP53, KRAS, EGFR, BRAF, and ALK, all of which are well-established in lung
cancer pathogenesis.

5.10 Statistical Significance Analysis

To confirm the performance gains were statistically significant:
1.  Wilcoxon signed-rank test (o.= 0.05) was used between GE-DHF and all baselines.
2. Results showed p < 0.01, confirming that improvements were not due to random variation.
3. The Cohen’s d effect size of 1.35 indicated a large performance gain.

5.11 Biological Interpretation of Results
Functional enrichment of top-ranked genes revealed:
1. PI3K-AKT signaling, MAPK pathway, and EGFR-dependent cascades as dominant biological processes.
2. GO analysis confirmed involvement in cell cycle regulation, DNA repair, and apoptosis signaling.
These biological insights align with known molecular mechanisms of lung cancer, validating the framework’s interpretability and
biomedical relevance.

5.12 Comparative Discussion
Compared with state-of-the-art models (Table 7), the proposed GE-DHF framework demonstrates superior robustness,
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accuracy, and interpretability.
It effectively balances computational efficiency (through GA-based gene reduction) and deep learning performance (through
CNN-LSTM hybridization).

Model (Year) Data Type Accuracy (%) | AUC | Reference
Yuvargj et al., 2023 | RNA-Seq 93.1 0.97 | Elsevier CBM
Wang et al., 2023 TCGA-LUAD 92.4 0.95 | Frontiers Genetics
Proposed GE-DHF | RNA-Seq (TCGA + GTEX) | 96.8 099 | —

5.13 Summary of Experimental Findings

The GA module effectively reduced dimensionality without compromising accuracy.
The hybrid CNN-LSTM structure captured both local and sequential gene dependencies.
The model achieved state-of-the-art accuracy (96.8%) and excellent interpretability.
Biological enrichment confirmed the relevance of the identified gene subsets.

Statistical validation established significant superiority over baselines (p < 0.01).

g

5.14 Conclusion of Experimental Study

The experimental evaluation confirms that the proposed Gene Expression—Guided Deep Hybrid Model (GE-DHF) provides a
robust, interpretable, and high-performing framework for lung cancer diagnosis. Its integration of bioinformatics-driven gene
selection and deep hybrid learning offers a promising pathway toward Al-assisted precision oncology.

DISCUSSION

6.1 Overall Interpretation of Results

The experimental results demonstrate that the proposed Gene Expression—-Guided Deep Hybrid Framework (GE-DHF)
effectively integrates bioinformatics feature optimization and deep neural modeling to achieve robust and biologically
interpretable lung cancer classification.

Achieving an overall accuracy of 96.8% and ROC-AUC of 0.99, the model substantially outperforms traditional and
contemporary deep learning baselines, confirming the efficiency of the GA + CNN + LSTM integration in capturing complex
gene expression patterns.

Unlike conventional approaches that rely solely on either statistical feature selection or isolated deep architectures, GE-DHF
leverages the evolutionary adaptability of GA for selecting biologically meaningful gene subsets and the representation power
of CNN-LSTM hybrids for learning intricate patterns.

This synergy between optimization and learning results in superior predictive accuracy, reduced overfitting, and enhanced
interpretability are three critical challenges in genomic deep learning.

6.2 Comparison with Previous Studies

Several prior studies have explored deep learning for lung cancer classification using transcriptomic data, but most faced
limitations related to high dimensionality, overfitting, or lack of biological validation. Yuvaraj et al. (2023) [22] proposed a gene
selection—enhanced CNN model (IWOA + ECNN), achieving 93.1% accuracy. Wang et al. (2023) [19] used a CNN-based
survival prediction approach with TCGA data, reporting 92.4% accuracy. Davri et al. (2023) [6] reviewed deep learning
applications for lung cancer, emphasizing the lack of hybrid interpretability. Compared to these, the GE-DHF model
demonstrates a 3-5% accuracy improvement, reflecting the advantage of coupling GA-based optimization with deep
hierarchical learning. Furthermore, GE-DHF includes biological pathway enrichment validation, which is often omitted in
existing works, bridging computational outcomes with biological insight.

These results confirm that evolutionary-guided feature refinement is crucial for deep models trained on high-dimensional gene
expression data, and that hybrid frameworks outperform single-architecture models in biomedical tasks requiring interpretability
and robustness.

6.3 Role of Genetic Algorithm in Improving Model Robustness

The integration of the Genetic Algorithm (GA) as a pre-learning optimization stage played a pivotal role in addressing the “curse
of dimensionality” inherent in gene expression datasets. By evolving a compact subset of 412 genes, the GA reduced redundancy
and improved generalization without manual intervention. This approach led to faster convergence and lower computational
overhead during CNN-LSTM training.

Moreover, GA’s stochastic search capability ensured the inclusion of genes contributing synergistically to classification, not just
those individually correlated with class labels. This multivariate selection contrasts sharply with univariate statistical methods
(e.0., ANOVA, t-test), which often neglect gene—gene interactions. Hence, the GA facilitated biologically meaningful feature
representation that directly improved the learning capacity of the hybrid network.
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6.4 Strength of CNN-LSTM Integration

The CNN component effectively extracted local co-expression patterns like analogous to spatial motifs from the gene
correlation—based pseudo-images, while the LSTM layers modeled long-range dependencies that mimic temporal or sequential
gene interactions.

Together, they formed a hierarchical learning mechanism that can capture both localized and distributed biological
relationships across genes.

Empirical evidence supports this: CNN-only and LSTM-only architectures achieved accuracies of 91.4% and 92.2%, respectively
and when combined, CNN-LSTM achieved 96.8% accuracy, indicating a complementary learning effect.

This demonstrates that gene expression patterns, although non-sequential, exhibit structured dependencies that can be effectively
modeled as “temporal-like” relationships when using sequential architectures like LSTM. Such modeling is biologically plausible,
reflecting dynamic gene regulatory interactions that influence cancer progression.

6.5 Biological and Clinical Significance

The biological interpretability of the GE-DHF framework represents one of its most important contributions.
The genes identified by the GA and highlighted through SHAP and LIME explainability tools (e.g., TP53, KRAS, EGFR, ALK,
BRAF) are well-known driver genes in lung cancer, particularly in adenocarcinoma (LUAD) and squamous cell carcinoma
(LUSC).

Pathway enrichment analyses confirmed associations with key oncogenic signaling networks, including: 1) PISK-AKT
signaling, 2) MAPK cascade, 3) p53-mediated apoptosis and 4) EGFR downstream signaling.

The alignment between computationally derived biomarkers and established biological mechanisms validates the reliability of
the model and enhances its potential translational utility in clinical diagnostics.

Clinically, such a model could serve as a decision-support tool for: 1) Early and non-invasive molecular classification of lung
tumors, 2) Stratification of patients for targeted therapies and 3) Integration into multi-omics workflows for personalized
oncology.

6.6 Interpretability and Explainability of Deep Models

A common criticism of deep learning in genomics is the “black-box” nature of its predictions.
To mitigate this, GE-DHF integrates explainable Al (XAl) techniques, such as SHAP (SHapley Additive exPlanations) and
LIME (Local Interpretable Model-Agnostic Explanations), to rank genes by their contribution to prediction outcomes.

This  transparency  enables  direct  biological  validation and trust in  the model’s predictions.
By mapping model attention to known cancer pathways, GE-DHF transcends beyond predictive performance to offer
interpretable biological insights, facilitating translational adoption in clinical and research contexts.

6.7 Statistical and Computational Robustness

Statistical tests, including the Wilcoxon signed-rank test (p < 0.01) and Cohen’s d (1.35), confirmed that the observed
performance gains of GE-DHF are statistically  significant and exhibit a large effect size.
Moreover, 10-fold cross-validation demonstrated minimal variance across folds (+1.2%), indicating strong generalizability.

From a computational perspective, the GA reduced input dimensionality by 97.8%, enabling deep learning to operate efficiently
even with limited sample sizes — a key advantage for biomedical applications where data scarcity is common.

6.8 Limitations of the Current Study
Despite promising results, certain limitations warrant consideration:
Sample Size Constraints: TCGA and GTEx datasets, though comprehensive, remain limited in sample diversity.
Larger, multi-center datasets are needed for external validation.
2. Single-Omics Approach: The current framework relies solely on transcriptomic data; integrating multi-omics
(proteomics, methylomics, and metabolomics) could improve precision.
3. Computational Complexity of GA: Although efficient, GA-based optimization remains computationally intensive for
ultra-large-scale datasets.
4. Lack of Clinical Parameter Integration: The absence of clinical variables (e.g., age, smoking status, tumor grade)
restricts the model’s clinical predictive scope.
Future research should focus on addressing these limitations to enhance translational applicability.

6.9 Future Directions
Building upon the success of GE-DHF, several future extensions are envisioned:
1. Multi-Omics Integration: Incorporating DNA methylation, proteomics, and metabolomics could provide a holistic
molecular fingerprint of lung cancer.
2. Graph Neural Networks (GNNs): Replacing CNN with GNN modules may allow direct modeling of gene—gene
interaction networks.
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3. Transfer Learning and Federated Learning: Leveraging pre-trained genomic models and decentralized training
across institutions could improve generalization and privacy.

4. Explainable Decision Support Systems: Integrating the model into clinical pipelines for Al-assisted molecular
diagnosis and treatment planning.

5. Real-Time Cloud Deployment: Implementation on scalable cloud-based architectures for rapid genomic classification
in clinical laboratories.

6.10 Summary of Discussion
The findings of this study highlight the potential of combining evolutionary algorithms with deep hybrid architectures for
high-dimensional genomic data analysis.

By addressing limitations of existing models such as overfitting, interpretability, and biological validation—the proposed GE-
DHF provides a robust, explainable, and scalable solution for lung cancer diagnosis. Its  performance and interpretability
position it as a promising foundation for future precision medicine platforms integrating Al and multi-omics.

CONCLUSION

This study presents a Gene Expression—Guided Deep Hybrid Model (GE-DHM) that combines CNN, LSTM, and GA-based
feature selection for accurate lung cancer diagnosis. By integrating gene-level information into deep learning processes, the model
achieves superior accuracy, interpretability, and robustness. Future research could explore integrating multi-omics data and
explainable Al techniques to further enhance clinical applicability.
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