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ABSTRACT

Peptic ulcer disease remains a major gastrointestinal disorder that often goes undiagnosed due to subtle visual cues and variability
in endoscopic interpretation. To address these diagnostic challenges, this study proposes an Al-based diagnostic framework
utilizing Deep Convolutional Neural Networks (DCNNs) for the automated detection and classification of peptic ulcers from
endoscopic images. This study presents an Al-based diagnostic framework employing pretrained Deep Convolutional Neural
Networks (DCNNs) — VGG16, ResNet50, InceptionV3, and the Hugging Face Vision Transformer (ViT) — for automated
classification of ulcerous and non-ulcerous endoscopic images. The proposed model integrates transfer learning and Grad-CAM
visualization, enhancing both diagnostic accuracy and interpretability. Comparative analysis reveals that the Hugging Face Vision
Transformer (ViT) architecture achieved the highest classification accuracy of 96.8%, outperforming traditional CNN models.
The developed system offers a clinically interpretable, scalable, and user-friendly diagnostic tool that assists in the early
identification of gastric and duodenal ulcers, thereby reducing the dependence on manual endoscopic evaluation. Experimental
results demonstrate that the DCNN models can effectively identify early-stage ulcers with reduced false negatives, highlighting
its potential as a reliable clinical decision-support tool.
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INTRODUCTION

Peptic ulcers are localized erosions or open lesions that develop along the mucosal lining of the stomach and the proximal segment
of the small intestine. These ulcerations commonly manifest as persistent epigastric pain, often described as a burning or gnawing
discomfort, which tends to intensify on an empty stomach.

Clinically, peptic ulcers are classified into two major types: gastric ulcers, which occur within the stomach lining, and duodenal
ulcers, which develop in the initial portion of the small intestine, known as the duodenum. The predominant etiological factors
contributing to peptic ulcer formation include chronic infection by the bacterium Helicobacter pylori (H. pylori) and long-term
consumption of nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen and naproxen sodium. These agents disrupt
the protective mucosal barrier, leading to increased gastric acid penetration and mucosal injury.

Contrary to popular belief, psychosocial stress and dietary factors such as spicy food do not directly cause ulceration; however,
they can exacerbate symptoms and impede mucosal recovery [1]. The rising prevalence of peptic ulcer disease worldwide
necessitates accurate and early diagnostic methods, particularly through endoscopic imaging and artificial intelligence-assisted
detection systems [2], [3].
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Figure: 1.a) Diagram showing the normal vs Ulcer in the stomach, b) showing types of ulcer [9]
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Traditional diagnostic evaluation of peptic ulcer disease typically involves endoscopic image acquisition followed by expert
visual examination by gastroenterologists. While this process is considered reliable, it is often labor-intensive, prone to observer
fatigue, and may result in inconsistent interpretations among clinicians [4]. With the emergence of high-resolution endoscopic
imaging, researchers have increasingly focused on automating this diagnostic workflow using Artificial Intelligence (Al) and
Deep Learning (DL) techniques to enhance speed and consistency.

Among modern Al techniques, Deep Convolutional Neural Networks (DCNNs) have proven highly effective in learning visual
hierarchies directly from raw medical images. These models are capable of identifying complex patterns and structures associated
with gastrointestinal abnormalities, thereby assisting in the accurate recognition and categorization of ulcerative regions [5]. The
layered architecture of DCNNs allows the network to capture fundamental image features—such as contours and textures—at
lower levels, and progressively learn abstract characteristics related to ulcer morphology and severity at higher levels. Pretrained
architectures such as VGG16, ResNet50, and InceptionV3 have consistently achieved superior results in medical image
classification tasks owing to their depth, optimized feature extraction, and transfer learning adaptability [6], [7].

Incorporating DCNN models into Computer-Aided Diagnosis (CAD) frameworks can significantly improve the early
identification of peptic ulcers by automating image interpretation and minimizing diagnostic discrepancies. The explainability of
such systems is further strengthened through visualization tools like Gradient-weighted Class Activation Mapping (Grad-CAM),
which highlights image regions most influential to the network’s decision [8]. These visual explanations not only improve clinical
reliability but also foster transparency and interpretability, facilitating the seamless adoption of Al-based solutions in real-world
gastroenterological practice.

The integration of artificial intelligence (Al) in medical imaging has revolutionized the way clinicians analyze and interpret
complex visual data. Deep Convolutional Neural Networks (DCNNs), in particular, have shown strong potential in extracting
detailed spatial features from medical images and automating diagnostic tasks with accuracy comparable to expert clinicians [10].
In gastrointestinal endoscopy, CNN-based models have already demonstrated remarkable performance in identifying lesions,
classifying polyps, and detecting bleeding sites [11]. However, limited research has focused exclusively on peptic ulcer detection,
and most available studies lack extensive datasets or real-world validation [12]. Moreover, inconsistencies in image quality,
lighting, and anatomical variations make it difficult for traditional computer-aided systems to achieve stable performance across
diverse clinical cases [13].

LITERATURE REVIEW

Peptic ulcer disease (PUD) is one of the most common gastrointestinal disorders, primarily caused by Helicobacter pylori
infection, irregular medication use, and excessive gastric acid secretion. The condition is characterized by open sores in the
stomach or duodenal lining, which, if left untreated, can lead to internal bleeding, perforation, or obstruction. Although
endoscopic evaluation remains the clinical gold standard for diagnosing ulcers, manual interpretation is subjective and highly
dependent on the expertise and alertness of the endoscopist. Subtle variations in texture, illumination, and mucosal appearance
often make the early identification of ulcers challenging, particularly in large-scale screening or resource-limited environments.
The application of artificial intelligence (Al) in gastrointestinal endoscopy has advanced significantly, with deep learning models
achieving expert-level diagnostic performance in several image classification tasks. Early studies relied on traditional image-
processing techniques and handcrafted features for ulcer or lesion detection; however, these methods were often limited by
variations in lighting, camera angle, and mucosal texture, leading to inconsistent results. The introduction of Convolutional Neural
Networks (CNNSs) has transformed the field by enabling automatic feature extraction and robust image classification [14].

Wang et al. [15] implemented a deep CNN framework for ulcer recognition in wireless capsule endoscopy (WCE) images,
achieving substantial improvements in sensitivity and specificity compared to conventional algorithms. Similarly, Aoki et al. [16]
utilized a deep learning model for capsule endoscopy to detect gastrointestinal bleeding and ulcers, reporting an area under the
curve (AUC) exceeding 0.95, confirming AI’s clinical potential in endoscopic screening. Kratter et al. [17] further enhanced
WCE analysis using a multi-domain deep learning model that achieved patient-level ulcer detection accuracy across diverse
datasets, highlighting the advantages of transfer learning and domain adaptation.

Despite these advancements, existing literature reveals several limitations. Most studies rely on small, single-center datasets,
which restrict the generalizability of trained models. Additionally, real-time processing and model interpretability remain major
challenges, as most systems lack visualization mechanisms such as Grad-CAM to explain decision boundaries [6]. Moreover,
external validation on unseen clinical datasets is rarely performed, which limits deployment feasibility in real-world clinical
settings [18].

Table I: Comparison of Existing Works with the Proposed Study

Author & | Technique / Limitations Relevance to

SO | vear Model Used PELESEETRES | NG Hel e Identified Proposed Study

179
VASCULAR & ENDOVASCULAR REVIEW

www.VERjournal.com



http://www.verjournal.com/

Al-Based Peptic Ulcer Detection Using Deep Convolutional Neural Networks: A Diagnostic Accuracy Study

Deep CNN for . . . Demonstrates CNN
Wana et al ulcer detection in (Ij:t\g(tai WCE sAezgllfl\(/ﬁ? ha'gg Limited to WCE | potential;  inspires
1 g " | Wireless Capsule ity images; lacks | CNN-based
2019 (~5,000 specificity for ulcer : . SO
Endoscopy images) recoanition real-time analysis | detection in standard
(WCE) images g g endoscopy
Deep learning Focused on | Validates Al’s
. Capsule Reported AUC > | capsule imaging; | diagnostic strength;
Aoki et al., | model for Gl . - . 4
2 . endoscopy 0.95 for bleeding | not generalizable | motivates adaptation
2021 bleeding and ulcer | °. . ;
. video dataset | and ulcer detection to standard | for peptic  ulcer
detection
endoscopy endoscopy
Multi-domain Multi-center . Complex - .
Kratter et | deep learning | capsule ngh accuracy  for architecture; nghllg_hts domain
3 patient-level ulcer | . ~. adaptation for better
al., 2022 model  (transfer | endoscopy detection limited to capsule eneralization
learning) dataset images g
Annotated P
CNN_—l_)ase_d endoscopic Achieved 92% L_|m|te_d. dataset | Closely related _tg
Mahmood | classification of | . . diversity;  lacks | proposed topic;
4 S images accuracy in ulcer : .
etal., 2022 | digestive tract e external establishes baseline
. (stomach, classification S
disorders validation CNN performance
duodenum)
Al-assisted linical . Did not focus on _Supports Al Ut'“ty
Zhang et | endoscopic image Clinica Reduced _Inter- ulcer detection; | ™. endoscopy;
5 . - gastroscopy observer diagnostic ' | reinforces need for
al., 2022 analysis using - lacks dataset | ifi
CNNs datasets variation standardization ulcer-specific
framework
CNN-based
Klan ot classification for Gastrosco Achieved consistent Small dataset: no Provides basis for
6 al 2820 malignant VS | imades Py performance  with real-time anaI'sis ulcer type
N benign gastric g experts y differentiation
ulcers
. Review of Al in | Survey across . , | Lack of standard Empha3|_zes need for
Jin et al, - . . Summarized  AI’s . . standardized and
7 gastrointestinal multiple - . evaluation metrics L .
2022 - clinical potential - clinically validated
endoscopy studies across studies
Al models
Deep ;:lg:]rac diagnostic
Convolutional Curated racy, Focused on real-
Proposed . sensitivity, and . o
Neural Network | endoscopic e . time, ulcer-specific,
8 Study . specificity; Under evaluation - ;
(DCNN) for | image dataset | : clinically validated
(2025) d - . interpretable
automatic peptic | (imageNet) isualizati ith CNN
ulcer detection visualization  wit
Grad-CAM

The reviewed studies confirm the effectiveness of deep learning in gastrointestinal image analysis but reveal a gap in ulcer-
specific detection using standard endoscopic imagery. Most existing works are based on capsule endoscopy, lack external
validation, and are not optimized for real-time diagnostic use.

The proposed DCNN model bridges these gaps by focusing exclusively on peptic ulcer detection in standard endoscopic
images, using robust preprocessing, cross-validation, and explainable Al (Grad-CAM) to enhance clinical reliability.

METHODOLOGY
This section describes the systematic framework adopted for automated peptic-ulcer detection using a deep convolutional neural
network (DCNN) models. The workflow consists of four principal stages: dataset preparation, image preprocessing and
augmentation, CNN model design and training, and performance evaluation. Fig. 1 illustrates the overall workflow of the
proposed approach.The overall workflow of the proposed system is depicted conceptually in Fig. 2: The diagram illustrates the
sequential stages of data preprocessing, feature extraction using pretrained DCNN models, classification, and Grad-CAM-based

visual explanation within the Streamlit application interface.

VASCULAR & ENDOVASCULAR REVIEW

www.VERjournal.com

180



http://www.verjournal.com/

Al-Based Peptic Ulcer Detection Using Deep Convolutional Neural Networks: A Diagnostic Accuracy Study

Input Preprocessing Classification

- Resizing Ulcer
- - Normallzatllon Normal
« Augmentation

Vlsuallzation

Fig. 2. Overall workflow of the proposed Al-based diagnostic framework.

1. Input Stage: Raw endoscopic images are acquired and loaded into the preprocessing pipeline.

2. Preprocessing Stage: Images are resized, normalized, and augmented to improve data variability and learning stability.

3. Feature Extraction: Convolutional layers learn hierarchical spatial features such as texture, color patterns, and ulcer
contours.

4. Classification Stage: Fully connected layers interpret extracted features to classify each image as ulcerated or normal.

5. Visualization and Evaluation: Grad-CAM maps highlight lesion areas; metrics such as accuracy, sensitivity, and
specificity quantify diagnostic performance.

The proposed system integrates multiple pretrained Deep Convolutional Neural Network (DCNN) models to enhance the
diagnostic accuracy of peptic ulcer classification from endoscopic images. The methodology involves dataset preparation, transfer
learning with pretrained architectures, and evaluation using standard performance metrics.

A. Dataset Description
The dataset used for this study comprises endoscopic images of the upper gastrointestinal tract, primarily focusing on gastric
and duodenal ulcers. The dataset was collected from open-access medical repositories [19] such as:
e Kaggle — Peptic Ulcer Disease Dataset
e AIlIMS Gastrointestinal Image Database, and
e Kvasir Dataset (for normal and pathological GI images).
Each image was annotated by medical experts into two primary categories:
e  Ulcerated (Positive) — images showing peptic or duodenal ulcers.
e Non-ulcerated (Negative) — normal stomach or duodenal mucosa.

To maintain consistency, all images were resized to 224x224 pixels, normalized, and augmented using random flips, rotations,
and brightness adjustments. The dataset was split into 70% training, 15% validation, and 15% testing subsets to ensure
unbiased evaluation.

B. DCNN Models

The study employs four popular pretrained models — VGG16, ResNet50, InceptionV3, and Hugging Face Vision
Transformer (ViT) — each fine-tuned for binary ulcer classification. These models were chosen for their proven robustness in
medical imaging and ability to extract deep hierarchical features.

1) VGG16 Model
The VGG16 architecture, introduced by Simonyan and Zisserman [20], consists of 16 layers, including 13 convolutional and 3
fully connected layers. It uses small 3x3 convolution kernels with deep stacking, allowing fine-grained feature extraction.
For transfer learning, the final dense layers were replaced with:

e  One fully connected layer (256 neurons, ReLU),

e Adropout layer (rate = 0.5), and

e  Asigmoid output neuron for binary classification.

VGG16’s simplicity and depth make it effective for capturing local ulcer features such as irregular mucosal textures.
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2) ResNet50 Model
The ResNet50 model [21] is a 50-layer deep residual network known for its skip connections, which help mitigate the vanishing
gradient problem during training. The residual mapping allows deeper feature extraction while maintaining gradient stability.
The final layers were fine-tuned for binary classification by adding:

e A Global Average Pooling layer,

e A fully connected layer (128 neurons, ReLU), and

e Asigmoid classifier.
ResNet50’s residual connections improve robustness against overfitting and capture complex ulcer morphology efficiently.

3) InceptionV3 Model

The InceptionV3 architecture integrates Inception modules, enabling multi-scale feature extraction using parallel convolutional
filters (1x1, 3x3, and 5x5). This structure captures both fine and coarse lesion patterns within the same layer.
The model was fine-tuned by adding custom dense layers for classification [22]. Its computational efficiency and receptive field
diversity make it particularly effective for medical image variability.

4) Hugging Face Vision Transformer (ViT)

The Hugging Face ViT model represents a transformer-based deep learning approach that divides each image into fixed-size
patches and processes them as sequences, similar to words in natural language [23]. Unlike CNNs, ViT learns global spatial
dependencies using self-attention mechanisms.

The model was fine-tuned using the google/vit-base-patch16-224 checkpoint from the Hugging Face model hub. This
transformer-based representation enhances model generalization and interpretability for endoscopic imagery.

C. Training and Optimization
All pretrained models were fine-tuned using the following parameters:
e  Optimizer: Adam
Learning rate: le-4
Batch size: 32
Epochs: 20
Loss function: Binary Cross-Entropy
Framework: TensorFlow/Keras (for CNNs) and Transformers (for ViT)

Each model was trained on Google Colab using GPU acceleration. Early stopping and model checkpoint callbacks were
implemented to prevent overfitting and retain the best-performing weights.

D. Evaluation Metrics
The models were evaluated using accuracy, precision, recall, F1-score, and ROC-AUC. In addition, Grad-CAM visualization
was employed to generate heatmaps that highlight ulcer regions, improving interpretability and clinical trust.

E. Workflow Overview

The overall workflow is summarized as follows:

Input Acquisition: Endoscopic images are loaded and preprocessed.

Feature Extraction: Each pretrained model extracts hierarchical visual representations.

Classification: Fine-tuned dense layers output ulcer/non-ulcer predictions.

Visualization: Grad-CAM highlights diagnostic image regions.

Comparison: Models are compared across performance metrics to identify the best-performing architecture.

g E

EXPERIMENTAL SETUP

The experimental framework was developed and executed on Google Colab, utilizing a Streamlit-based web interface to
provide real-time visualization of classification outcomes, Grad-CAM heatmaps, and comparative analyses of various pretrained
DCNN models. The experiments were conducted on an NVIDIA Tesla T4 GPU (16 GB VRAM) environment with 12 GB of
system memory, ensuring optimal computational performance. Core Python libraries, including TensorFlow, Keras,
Transformers, Matplotlib, OpenCV, NumPy, Scikit-learn, and Plotly, were employed for model training, evaluation, and
visualization. The use of GPU acceleration in Colab substantially minimized training duration and facilitated efficient fine-tuning
of all pretrained architectures, thereby enhancing the overall computational efficiency of the proposed framework.

Performance Evaluation
To validate diagnostic accuracy, the model is trained using 5-fold cross-validation and tested on unseen data. The following
metrics are computed:
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Aceuracy — TP + TN
WasY = TP Y TN + FP + FN
TP TN

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives, respectively.

RESULTS AND DISCUSSIONS

The experimental analysis was conducted using four pretrained deep learning architectures VGG16, ResNet50, InceptionV3,
and Hugging Face Vision Transformer (ViT) to classify endoscopic images into ulcerous and non-ulcerous categories. The
performance of each model was evaluated using metrics such as accuracy, precision, recall, F1-score, and AUC (Area Under
the Curve), ensuring a comprehensive assessment of diagnostic effectiveness.

The Vision Transformer (ViT) achieved the highest classification accuracy of 96.8%, outperforming traditional convolution-
based models. This superior performance can be attributed to ViT’s ability to capture global contextual information and learn
spatial dependencies across the image more effectively than conventional CNNs. InceptionV3 followed closely with 94.5%
accuracy, benefiting from its multi-scale feature extraction through inception modules. ResNet50 achieved 93.2% accuracy,
demonstrating robustness due to its residual connections that mitigate vanishing gradient issues, while VGG16 achieved 91.6%
accuracy, reflecting its effectiveness in capturing fine-grained texture features despite being computationally heavier.

Visualization using Gradient-weighted Class Activation Mapping (Grad-CAM) confirmed that all models correctly
highlighted ulcer regions in endoscopic images, reinforcing interpretability and clinical reliability. However, ViT’s heatmaps
exhibited more precise localization, closely aligning with annotated ulcer regions, suggesting enhanced model transparency.

The comparative analysis (Fig. X) and performance plots (Fig. Y) indicate that transformer-based architectures outperform
classical CNNs in terms of both accuracy and generalization capability. Furthermore, the Streamlit-based user interface
facilitated real-time performance visualization and model comparison, validating the framework’s suitability for clinical and
educational use.

Overall, the results demonstrate that integrating pretrained DCNN architectures with explainable Al tools can substantially
enhance the early detection and classification of peptic ulcers, reduce human error, and support gastroenterologists in
diagnostic decision-making.

Model Comparison

Compare predictions and Grad-CAM visualizations from ResNet50, VGG16, and InceptionV3.

Upload an Endoscopy Image

~ Drag and drop file here
e I - - Browse files

D |
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B Model Predictions and Grad-CAM Heatmaps

Fig. 3(a). Model prediction for an uploaded endoscopic image shows that the system classifies the image as normal and
displays the associated confidence score, demonstrating the model’s diagnostic capability in real-time image evaluation.
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K Model Predictions and Grad-CAM Heatmaps

ResNet50: Ulcer (59.56%) VGG16: Ulcer (83.90%) InceptionV3: Ulcer (71.61%)

Fig. 3(b). Model prediction for an uploaded endoscopic image shows that the system classifies the image as ulcerated
and displays the associated confidence score, demonstrating the model’s diagnostic capability in real-time image
evaluation and it also shows Grad-CAM heatmap visualization for ulcer localization.

® Model Predictions and Grad-CAM Heatmaps

ResNet50: Normal (61.24 VGG16: Ulcer (93.09

The diagram Fig.3(a), Fig. 3(b). Model prediction for an uploaded endoscopic image shows that the system classifies the
image as normal or ulcerated and displays the associated confidence score, demonstrating the model’s diagnostic
capability in real-time image evaluation and it also shows Grad-CAM heatmap visualization for ulcer localization.
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The diagram Fig.4 shows the Comparative performance analysis of pretrained DCNN modelsthat contains Bar chart
showing accuracy, precision, recall, and F1-score for VGG16, ResNet50, InceptionV3, and Vision Transformer (ViT)
models on the test dataset.

Fig. 4 . Comparative performance analysis of pretrained DCNN models.
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Fig.5: Radar Chart for Performance Metrics Comparison for Models

The radar chart in Fig. 5 provides a multi-dimensional visualization of the performance of VGG16, ResNet50, InceptionV3, and
Vision Transformer (ViT) models based on key evaluation metrics — accuracy, precision, recall, and F1-score. Each axis
represents one metric, and the enclosed area corresponds to the overall effectiveness of the model. The Vision Transformer (ViT)

exhibits the largest enclosed region, indicating its superior and more balanced performance across all metrics compared to
conventional CNN-based architectures.
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Fig. 6. Streamlit interface showing performance comparison of pretrained DCNN models for Peptic Ulcer
Detection.

The figure shows a Streamlit dashboard comparing pretrained models (VGG16, ResNet50, InceptionV3, and Hugging Face ViT)

for Al-based peptic ulcer detection. It includes a table and bar chart of accuracy, precision, recall, and F1-score, highlighting that
the Hugging Face ViT model achieved the best overall performance in ulcer classification..
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Fig. 7. Performance comparison of pretrained DCNN models based on evaluation metrics.

The bar chart compares the performance of four pretrained deep learning architectures VGG16, ResNet50, InceptionV3, and
Hugging Face Vision Transformer (ViT) — across four key evaluation metrics: accuracy, precision, recall, and F1-score.
Among the models, the Vision Transformer (ViT) achieved the highest scores in all performance metrics, with an accuracy
nearing 98%, demonstrating superior feature extraction and generalization capabilities. InceptionV3 followed closely,
maintaining high precision and recall values, while ResNet50 and VGG16 showed relatively lower performance, indicating
moderate sensitivity to feature variations in endoscopic images. The comparative results confirm that transformer-based
architectures outperform conventional convolutional networks in medical image classification tasks, providing higher diagnostic
reliability and robustness for peptic ulcer detection.

CONCLUSION

This research highlights the effectiveness of various pretrained deep learning architectures VGG16, ResNet50, InceptionV3,
and Hugging Face Vision Transformer (ViT) in detecting peptic ulcers from endoscopic images. By combining transfer
learning with Grad-CAM visualization in a Streamlit-based framework, the study enhances diagnostic precision and model
interpretability. Among the tested architectures, ViT demonstrated the best performance with 96.8% accuracy, confirming its
strong capability in medical image analysis. The proposed Al-driven diagnostic system provides a reliable, transparent, and
accessible tool that supports early and efficient identification of gastric and duodenal ulcers while minimizing dependence on
manual assessment.
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