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ABSTRACT

Diabetes remains one of the most data-intensive chronic diseases, demanding continuous monitoring, timely diagnostics, and
personalized therapeutic decisions. However, the growing reliance on Al-based predictive systems in diabetes care is hindered by
the lack of secure, interoperable data exchange frameworks across healthcare institutions. This paper proposes a blockchain-based
secure data exchange model tailored for Al-powered diabetes research and personalized therapy. The system integrates
blockchain’s immutability and decentralized trust mechanisms with federated AI architectures to ensure patient data
confidentiality while enabling collaborative model training across multiple medical centers. The framework employs smart
contracts for automated access control and consent management, ensuring compliance with data privacy standards such as HIPAA
and GDPR. Through cryptographic hashing, distributed ledger synchronization, and on-chain auditing, the proposed model
guarantees data provenance, transparency, and tamper-proof collaboration between hospitals, researchers, and Al systems.
Preliminary evaluations indicate that this blockchain-integrated approach enhances data integrity and reduces privacy breaches
while maintaining high model accuracy in personalized glucose regulation predictions. The study underscores the potential of
blockchain as a backbone for secure, intelligent, and ethical healthcare data ecosystems in precision diabetes therapy.
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INTRODUCTION

The growing global prevalence of diabetes mellitus has transformed it into a critical public health concern that demands
continuous innovation in research, data management, and personalized clinical interventions. As of recent global estimates, over
half a billion individuals live with diabetes, a number projected to rise significantly in the coming decades due to sedentary
lifestyles, dietary shifts, and genetic predispositions. The complexity of diabetes lies in its dynamic nature glucose fluctuations,
insulin responses, and comorbid conditions differ widely among patients making individualized treatment an absolute necessity.
Artificial Intelligence (Al) has emerged as a pivotal tool in addressing these challenges through predictive analytics, precision
diagnosis, and automated insulin dosing systems. Al-driven models, particularly those employing deep learning and machine
learning algorithms, can analyze vast amounts of heterogeneous data such as electronic health records (EHRS), continuous glucose
monitoring (CGM) data, and lifestyle parameters to deliver insights that enable tailored therapy. However, these systems depend
on large-scale, high-quality, and secure data exchange across multiple institutions and research environments. Traditional data-
sharing mechanisms in healthcare remain highly fragmented, centralized, and vulnerable to breaches, leading to privacy concerns,
lack of interoperability, and mistrust between data custodians. Consequently, even the most sophisticated Al models in diabetes
care are constrained by data silos, inconsistent standards, and limited access to real-world datasets, undermining their accuracy,
fairness, and clinical utility.

Blockchain technology offers a transformative solution to these limitations by introducing a decentralized, transparent, and
tamper-proof data management framework. Fundamentally, blockchain operates as a distributed ledger maintained across a
network of nodes that validate and store data transactions in immutable blocks. In the context of diabetes research, this
decentralized infrastructure ensures that sensitive patient information ranging from blood glucose readings to treatment outcomes
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can be securely exchanged without the need for a central authority or intermediary. Smart contracts within the blockchain can
automate access permissions, enforce consent management, and facilitate real-time data sharing between hospitals, laboratories,
and Al-driven analytical systems. By combining blockchain’s cryptographic assurance of data integrity with AI’s computational
intelligence, it becomes possible to establish a secure and scalable ecosystem for precision diabetes therapy. The proposed
blockchain-based secure data exchange system integrates federated learning, enabling Al models to be trained across distributed
datasets without transferring raw patient data. This approach preserves privacy while enhancing model robustness through
collaborative learning. Moreover, the immutable audit trail provided by blockchain supports regulatory compliance with
frameworks such as HIPAA and GDPR, assuring both researchers and patients of transparent data governance. In this manner,
the synergy of blockchain and Al can bridge the gap between medical data security and clinical innovation. The convergence of
these technologies promises not only to accelerate diabetes research but also to redefine the personalization of therapy through
trust-based, privacy-preserving, and interoperable digital infrastructures that align with the future of ethical, data-driven
healthcare.

RELEATED WORKS

The integration of blockchain in healthcare data management has become an emerging research frontier, primarily for its potential
to ensure privacy, integrity, and interoperability in multi-institutional data environments. Several studies have demonstrated
blockchain’s promise in resolving the long-standing challenges of centralized health data storage and insecure data transactions.
For instance, Xia et al. [1] proposed a blockchain-based medical record management system that employed smart contracts to
control access permissions and prevent unauthorized modifications. Similarly, Griggs et al. [2] developed MedRec, an Ethereum-
based prototype that demonstrated decentralized record sharing among healthcare providers while maintaining patient ownership
and auditability of data. Liang et al. [3] explored the scalability of blockchain frameworks in storing genomic data and highlighted
the limitations of existing public chains concerning storage efficiency and latency. To address this, hybrid blockchain models
combining on-chain hashes and off-chain encrypted data were suggested to optimize performance. Zhuang et al. [4] emphasized
the role of consensus mechanisms particularly Proof of Authority (PoA) and Proof of Stake (PoS) in reducing computational
costs for healthcare applications, where energy efficiency and low latency are crucial. Moreover, Esmaeilzadeh [5] highlighted
the ethical implications of blockchain adoption in healthcare, suggesting that while the technology enhances trust and
transparency, it requires standardized governance models to regulate consent, interoperability, and liability in case of data misuse.
Collectively, these studies established blockchain as a foundational technology capable of supporting secure and auditable health
information systems, yet they also underscored the gaps in integrating blockchain with data-intensive Al applications such as
those in diabetes research.

Artificial Intelligence (Al), particularly through machine learning (ML) and deep learning (DL) frameworks, has revolutionized
diabetes management by improving diagnostics, monitoring, and therapeutic personalization. Recent advances in Al have enabled
predictive modeling of blood glucose fluctuations, early diagnosis of diabetic retinopathy, and optimization of insulin therapy.
For instance, Rahman et al. [6] designed an ML-based model that used patient-specific glucose readings and lifestyle parameters
to forecast hypoglycemia risk, demonstrating higher accuracy compared to traditional statistical methods. Similarly, Suh et al.
[7] integrated Al algorithms with continuous glucose monitoring (CGM) systems to detect early signs of glycemic variability and
enhance insulin dosing precision. Kaur and Kumari [8] investigated deep neural networks (DNNSs) to classify diabetic versus non-
diabetic individuals using multi-parametric health datasets, achieving over 95% accuracy. However, these Al models heavily
depend on large and diverse data pools, raising concerns about patient privacy, data leakage, and ethical consent. Federated
learning (FL) emerged as a viable solution to these issues by enabling decentralized model training without sharing raw data.
McMahan et al. [9] pioneered FL to allow distributed Al training across devices and institutions, a concept that has since been
extended to healthcare by Rieke et al. [10], who demonstrated federated Al for medical imaging with improved security and
comparable model performance to centralized systems. Despite these advancements, Al systems in diabetes management continue
to face barriers in multi-institutional collaboration due to the absence of a robust, tamper-resistant, and auditable data exchange
infrastructure. This limitation creates an opportunity for blockchain to serve as a complementary layer that guarantees data
provenance, access control, and compliance during Al model training and inference.

The convergence of blockchain and Al has recently gained traction as a promising paradigm for secure, intelligent, and
decentralized health analytics. Studies have shown that blockchain can serve as a trusted orchestrator for Al workflows, ensuring
both data integrity and accountability. Nguyen et al. [11] proposed Blockchain-FL, an architecture that integrates blockchain with
federated learning to ensure that Al model updates are securely recorded and verifiable, thereby eliminating the risk of tampering
or adversarial manipulation. In another study, Krittanawong et al. [12] examined blockchain-enabled Al models for predictive
cardiovascular analytics, emphasizing the relevance of immutable audit trails and tokenized incentives for data sharing. Similarly,
Hossain et al. [13] applied blockchain to loT-based diabetes monitoring, demonstrating how smart contracts can automate device
registration, secure patient data uploads, and manage access for clinicians and Al systems in real time. Xu et al. [14] proposed a
permissioned blockchain for medical data exchange integrated with Al-assisted diagnostics, reporting improved system
trustworthiness and operational efficiency compared to conventional data-sharing systems. Recent reviews by Tanwar et al. [15]
synthesized these developments, noting that blockchain-Al convergence represents the next frontier in healthcare innovation,
particularly in chronic disease management such as diabetes, where personalized, data-driven care depends on security,
transparency, and distributed intelligence. Yet, these studies also reveal persistent gaps such as interoperability among blockchain
networks, energy-intensive consensus mechanisms, and the absence of standardized frameworks for integrating Al algorithms
with encrypted medical data. This paper addresses these challenges by proposing a blockchain-based secure data exchange
framework specifically tailored for Al-powered diabetes research and personalized therapy, merging the strengths of federated
Al learning and decentralized blockchain governance to achieve secure, scalable, and ethically compliant healthcare innovation.
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METHODOLOGY

3.1 Data Acquisition and Preprocessing

The first stage involves structured data collection from diverse sources: Electronic Health Records (EHRs), Continuous Glucose
Monitoring (CGM) devices, wearable sensors, and laboratory databases. Data is standardized using the Fast Healthcare
Interoperability Resources (FHIR) protocol to ensure interoperability across institutions. Personal identifiers are anonymized
using hash-based pseudonymization to align with GDPR and HIPAA standards [16]. Preprocessing steps include missing value
imputation, outlier detection, and normalization to prepare heterogeneous datasets for Al training. Data integrity is verified via
blockchain transaction hashes to detect tampering during transmission between medical facilities.

3.2 Blockchain Layer Design

The blockchain layer serves as the backbone of the proposed architecture. It provides an immutable, decentralized infrastructure
for recording, auditing, and governing all data-sharing transactions. This layer utilizes Hyperledger Fabric, a permissioned
blockchain framework chosen for its scalability, privacy features, and low latency compared to public blockchains like Ethereum
[17]. Patient data is not stored directly on-chain due to storage limitations and privacy risks. Instead, off-chain encrypted data
is stored in distributed cloud repositories (e.g., IPFS), while blockchain smart contracts maintain metadata references and access
permissions.

Each transaction undergoes digital signature verification using Elliptic Curve Cryptography (ECC) to ensure authenticity. The
consensus mechanism employed is Practical Byzantine Fault Tolerance (PBFT), offering energy efficiency and fault tolerance
suitable for healthcare environments [18]. Smart contracts automate consent management, access approvals, and audit logging.
For instance, when a research institution requests access to patient data, the smart contract automatically validates credentials,
verifies consent, and logs the transaction immutably.

Table 1: Blockchain Layer Specifications

Component Function Description

Blockchain Framework | Network foundation Hyperledger Fabric (v2.4)

Consensus Mechanism | Validation protocol PBFT (Practical Byzantine Fault Tolerance)
Encryption Standard Data security ECC + AES-256

Smart Contracts Access management Written in Solidity for data-sharing authorization
Data Storage Distributed environment | Off-chain IPFS with on-chain hash linking
Compliance Standards | Legal adherence HIPAA, GDPR, NIST SP 800-53

This blockchain configuration ensures traceability, data provenance, and non-repudiation, making it ideal for clinical research
environments that require auditability and transparency in data handling.

3.3 Federated Al Learning Layer

The Al analytics layer is built upon a federated learning (FL) architecture, enabling decentralized model training across
multiple medical centers without moving patient data outside institutional boundaries. Each participating node (hospital or
research center) trains a local Al model using its private dataset. The local model weights not the raw data are encrypted using
homomorphic encryption and shared through the blockchain network [19]. The global model is then updated via secure
aggregation on-chain, ensuring that no single party gains access to the complete dataset.

The Al models applied include Long Short-Term Memory (LSTM) networks for glucose trend forecasting and Convolutional
Neural Networks (CNNs) for retinal image-based diabetic retinopathy detection. The federated model parameters are validated
using Root Mean Square Error (RMSE) for regression tasks and F1-score for classification accuracy. To mitigate bias, the
system employs differential privacy mechanisms that inject calibrated noise into gradient updates before they are broadcast
across the blockchain [20].

Table 2: Federated Al Learning Parameters and Metrics

Model Type Dataset Type Evaluation Metric | Privacy Mechanism Average Accuracy
LSTM Time-series glucose levels | RMSE Differential Privacy 93.4%
CNN Retinal fundus images F1-Score Homomorphic Encryption | 94.7%
Random Forest | EHR and lifestyle data Precision Secure Aggregation 91.2%

This collaborative learning process improves generalization and reduces overfitting by incorporating diverse patient data while
maintaining strict privacy compliance. The blockchain ensures model update authenticity through cryptographic verification and
time-stamped logging, thus preventing model poisoning or adversarial manipulation.

3.4 Integration and Validation

The integration layer connects blockchain operations and Al analytics, ensuring seamless interoperability. Smart contracts
govern data flow and model updates, ensuring that only verified nodes participate in federated learning rounds. Integration testing
confirms compatibility with standard EHR systems (e.g., HL7, FHIR). System performance was validated through simulation
using Python TensorFlow (for Al) and Hyperledger Caliper (for blockchain benchmarking).
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Performance metrics include:

Latency: Time taken for transaction confirmation (<1.2 seconds average).

Throughput: Number of secure transactions per second (= 250 TPS).

Blockchain overhead: <10% computational increase compared to traditional APIs.

Energy efficiency: 35% improvement over PoW-based architectures due to PBFT adoption [21].

Security validation was conducted using penetration testing and adversarial simulations. Tests confirmed resilience against
man-in-the-middle attacks, data tampering, and unauthorized model manipulation. Privacy-preserving techniques like zero-
knowledge proofs (ZKPs) were further implemented to verify computation correctness without exposing sensitive data [22].

3.5 Ethical and Regulatory Compliance

All data transactions comply with international data protection regulations. The consent management module ensures
dynamic, revocable permissions, allowing patients to grant or withdraw data-sharing rights at any time. This aligns with principles
of data sovereignty and informed consent emphasized by GDPR Article 20. Ethical considerations include minimizing
algorithmic bias through representative data sampling and transparency in Al decision-making [23].

RESULT AND ANALYSIS

4.1 Overview of System Implementation and Evaluation Setup

The proposed blockchain-based secure data exchange framework was implemented using Hyperledger Fabric (v2.4) and Python
TensorFlow (v2.12). The simulation environment consisted of three participating hospital nodes each representing a
decentralized data custodian connected through a private blockchain network. Every node trained local Al models for diabetes
prediction using their respective datasets derived from glucose readings, EHRs, and retinal images. Model aggregation was
conducted through the blockchain, where encrypted weight updates were stored on-chain for verification.

The evaluation focused on security, performance efficiency, scalability, and Al model accuracy under both normal and stress-
test conditions. Each performance indicator was assessed against benchmarks derived from conventional centralized data-sharing
frameworks. The overall results demonstrated that the blockchain—Al integration outperformed traditional methods in both data
security and operational transparency while maintaining computational efficiency suitable for clinical deployment.

4.2 Blockchain Performance Metrics

To assess blockchain performance, three critical indicators were measured: transaction latency, throughput, and storage
overhead. Transaction latency represents the average time taken for a data access or consent update to be confirmed on the
blockchain network, while throughput indicates the number of verified transactions per second (TPS).

The framework maintained consistently low latency (1.2 seconds average) due to the efficiency of the PBFT consensus
algorithm and reduced network congestion. The throughput averaged 247 TPS, proving the system’s capacity to handle high
transaction volumes in multi-hospital data exchange scenarios. Storage overhead defined as the ratio of on-chain metadata size
to total off-chain data remained below 8%, confirming scalability for large-scale deployments.

Table 3: Blockchain Performance Metrics

Metric Evaluation Description Recorded Value | Performance Interpretation
Transaction Latency Time for transaction confirmation 1.2 seconds Real-time compatible
Throughput Successful transactions per second 247 TPS High network efficiency
Storage Overhead On-chain metadata to total data ratio 8% Scalable with minimal load
Fault Tolerance Node failure recovery rate 95.7% Strong fault recovery

Audit Verification Time | Average time to verify consent history | 2.8 seconds Efficient traceability

The results confirmed that the permissioned blockchain structure provides high throughput and fast response times suitable
for time-sensitive medical data exchanges, unlike public blockchains constrained by mining delays and congestion.
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4.3 Federated Learning Performance

The federated learning component was evaluated on model accuracy, training convergence, and privacy preservation. The local
models LSTM, CNN, and Random Forest were trained independently across three institutions, and their encrypted weight updates
were aggregated on-chain. The global model achieved 94.2% average accuracy with an RMSE value of 0.41 mmol/L for
glucose prediction tasks.

The privacy-preserving differential noise mechanism introduced a negligible accuracy drop (<1%) compared to centralized
training, affirming the robustness of privacy defense mechanisms. Moreover, convergence time reduced by 15% compared to
non-blockchain federated setups due to the automated parameter synchronization enabled by smart contracts.

Table 4: Federated Learning Model Performance

Model Type | Data Type Local Global Aggregated | RMSE / F1- | Training Convergence
Accuracy Accuracy Score Time
LSTM Glucose  time- | 92.8% 94.1% RMSE = 0.41 | 25 mins
series mmol/L
CNN Retinal ~ fundus | 93.6% 95.3% F1=0.94 32 mins
images
Random EHR + lifestyle | 90.9% 93.2% Precision = 0.91 21 mins
Forest data

The blockchain-aided federated system provided a secure aggregation pipeline with no detectable data leakage. This setup
successfully balanced performance and privacy, enabling Al models to learn collaboratively across institutional boundaries
without compromising sensitive medical data.

Blockchain and the Internet of Things (loT) in Healthcare

Figure 2: Blockchain and 10T in Healthcare [25]

4.4 Security and Privacy Analysis
The framework was subjected to extensive security validation through penetration testing and simulated adversarial attacks. The
system demonstrated resilience against data tampering, unauthorized access, and model poisoning.
Key security outcomes included:
e  Zero data breaches during inter-node communication.
Immutable audit trail generation for every data transaction.
Access request denial rate of 100% for unverified entities.
No adversarial manipulation detected during model updates.

Moreover, hash integrity checks revealed complete consistency between on-chain metadata and off-chain encrypted data stores,
confirming end-to-end traceability. The inclusion of zero-knowledge proofs (ZKPs) further strengthened the confidentiality
layer by enabling verification of computations without exposing sensitive parameters.

Table 5: Security Assessment Metrics

Security Parameter Description Recorded Outcome Interpretation

Data Tampering Detection Blockchain hash comparison 100% detected Full immutability maintained
Unauthorized Access Smart contract validation 0 successful intrusions | Strong access control

Model Poisoning Resistance | Adversarial simulation 97.5% resilience High robustness

Data Provenance Tracking Audit chain verification 100% traceable Transparent lineage

Privacy Leakage Rate Information exposure probability | <0.5% Strong privacy compliance

These findings validate the framework’s ability to enforce trust and accountability in Al-powered healthcare systems by
preventing unauthorized model manipulation or data tampering.

4.5 System Scalability and Energy Efficiency
To ensure real-world feasibility, the system was evaluated for scalability and energy efficiency. Increasing the number of
participating nodes from 3 to 10 showed only a moderate increase in latency (1.2s — 1.6s) and negligible drop in throughput (247
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TPS — 231 TPS). The PBFT consensus and off-chain storage mechanisms allowed linear scalability without compromising
network stability.

Energy consumption was evaluated relative to Proof-of-Work (PoW) systems. The proposed model consumed 35% less power,
largely due to lightweight consensus and reduced block validation redundancy. The energy-to-transaction ratio was optimized to
0.08 kWh per 100 transactions, making it feasible for sustainable healthcare deployments.

Table 6: Scalability and Energy Efficiency Evaluation

Number of Nodes | Avg. Latency (s) | Throughput (TPS) | Energy/100 Transactions (kWh) | Fault Recovery (%)
3 1.2 247 0.08 96.2
5 1.3 242 0.09 95.8
8 15 236 0.09 95.3
10 1.6 231 0.10 94.9

The scalability test confirmed that the framework can expand across multiple healthcare organizations without significant
degradation in performance or excessive computational overhead.

4.6 Interpretative Discussion

The results demonstrate that integrating blockchain and Al within a federated architecture provides an effective, secure, and
scalable foundation for collaborative diabetes research and personalized therapy. Blockchain’s immutability and decentralized
trust protocols eliminate single points of failure while ensuring traceable and auditable data governance. The federated Al layer
enhances clinical prediction models by allowing multiple institutions to contribute to global intelligence without data exposure.
Performance analyses show a trade-off between latency and scalability, but the system maintains operational efficiency suitable
for healthcare-grade applications. The security results reaffirm that blockchain-based frameworks can mitigate the key risks of
centralized Al namely data tampering, bias manipulation, and model poisoning. Additionally, the privacy-preserving mechanisms
incorporated into federated learning enable compliance with ethical standards, promoting patient confidence and regulatory
adherence. Overall, the combination of blockchain governance, federated Al intelligence, and privacy-centric computation
not only enhances predictive precision in diabetes management but also establishes a replicable blueprint for other chronic disease
domains where data security and collaboration are paramount.

CONCLUSION

The findings of this research confirm that the convergence of blockchain technology and artificial intelligence represents a
transformative step toward secure, ethical, and collaborative healthcare ecosystems, particularly in diabetes research and
personalized therapy. The blockchain-based secure data exchange framework developed in this study establishes a decentralized,
transparent, and immutable infrastructure for managing medical data while enabling federated Al learning across multiple
institutions. Through this hybrid approach, sensitive patient information remains encrypted and locally retained, eliminating the
vulnerabilities inherent in traditional centralized storage models. The implementation of Hyperledger Fabric and smart contracts
ensured automated consent management, data integrity verification, and regulatory compliance with international standards such
as GDPR and HIPAA. In parallel, the federated Al layer demonstrated that it is possible to train highly accurate predictive models
for glucose level forecasting and diabetic retinopathy detection without compromising data privacy or ownership. The integration
of cryptographic techniques such as homomorphic encryption, elliptic curve cryptography, and zero-knowledge proofs
strengthened data confidentiality and ensured end-to-end security throughout the data-sharing lifecycle. The empirical results
provided strong evidence that blockchain-based frameworks can sustain high throughput, low latency, and strong resistance
against tampering and unauthorized access. The proposed system achieved notable operational efficiency with less than 8%
storage overhead and maintained an average transaction latency of just 1.2 seconds, demonstrating feasibility for real-time
healthcare environments. Furthermore, the federated learning component achieved accuracy levels exceeding 94% in predictive
and diagnostic tasks, validating the practicality of decentralized Al in precision medicine. The auditability and traceability offered
by the blockchain layer fostered trust among participating entities patients, clinicians, and researchers thereby facilitating
transparent and compliant data collaborations. More importantly, this framework addresses one of the most persistent barriers in
healthcare innovation: the tension between data utility and patient privacy. By securely linking Al intelligence to blockchain
governance, this model enables multi-institutional research collaborations without risking confidentiality, thereby democratizing
access to high-quality data for scientific advancement.

This study contributes a robust technological blueprint for the ethical implementation of Al in digital health by aligning the
principles of decentralization, privacy preservation, and algorithmic accountability. The architecture’s modular design allows
flexible adaptation to other chronic disease domains such as cardiovascular disorders or oncology, making it a scalable model for
next-generation healthcare systems. From a policy standpoint, it supports the development of standardized, interoperable
infrastructures that comply with legal mandates while enabling secure data democratization for public health innovation. By
bridging the gap between trust and technology, this research lays the foundation for a paradigm shift where healthcare intelligence
becomes not only more accurate but also more transparent, patient-centric, and globally collaborative. The proposed blockchain-
based secure data exchange model thus stands as a viable, future-ready solution to the twin challenges of data security and
interoperability that have long constrained Al-driven diabetes research and personalized medicine.

FUTURE WORK
Future research should focus on enhancing scalability and computational efficiency through hybrid consensus mechanisms such
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as Proof-of-Authority combined with Delegated Byzantine Fault Tolerance to reduce latency in larger networks. Integrating edge
Al processing can also decentralize computation further, allowing wearable devices and loT-based glucose monitors to contribute
directly to federated learning updates, improving real-time personalization for patients. Another key direction involves the use of
Zero-Knowledge Machine Learning (ZKML) and Secure Multi-Party Computation (SMPC) to strengthen privacy during
Al inference without sacrificing accuracy. Additionally, incorporating token-based incentive systems could encourage hospitals,
laboratories, and patients to participate in data exchange ethically and transparently. Future frameworks should aim to comply
with evolving data governance laws and expand interoperability with global EHR standards to create a unified health data
ecosystem. Moreover, simulation under real-world hospital networks will be crucial to validate robustness, energy efficiency, and
user adoption. Overall, the future direction is toward a fully autonomous, blockchain-orchestrated Al ecosystem for diabetes
management that balances medical innovation, data security, and patient empowerment on a global scale.
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