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ABSTRACT 

Medical image segmentation plays a pivotal role in computer-aided diagnosis, particularly in detecting and analyzing brain tumors 

using Magnetic Resonance Imaging (MRI). Accurate segmentation is essential for effective treatment planning and prognosis. 

Traditional methods such as K-Means and Genetic Algorithm-based segmentation often struggle with intensity inhomogeneity, 

noise, and irregular tumor boundaries. Although the Minkowski distance-based segmentation improves accuracy by incorporating 

geometric adaptability, it still lacks the intelligence to handle complex and heterogeneous tumor structures effectively. To address 

these limitations, this paper proposes a novel Hybrid Minkowski–Driven Fuzzy C-Means (FCM) with Particle Swarm 

Optimization (PSO) and Deep Learning (HMDL) framework for robust brain tumor segmentation and classification. The 

Minkowski distance metric enhances adaptive clustering by capturing spatial similarity, while the FCM algorithm ensures precise 

boundary delineation through fuzzy membership modeling. Further, PSO optimization dynamically fine-tunes the clustering 

parameters to achieve optimal convergence and stability. The deep learning module, built upon a U-Net-based convolutional 

neural network, refines segmentation outputs and enables accurate classification of tumor regions. 

In addition to traditional 2D slice-based processing, the proposed framework incorporates 3D volumetric data segmentation using 

multi-modal MRI (T1, T2, FLAIR) to ensure inter-slice spatial consistency and precise volumetric tumor representation. This 3D 

integration significantly enhances the model’s ability to capture anatomical continuity across slices, leading to more reliable and 

clinically relevant segmentation outcomes. Experimental evaluations on the BRATS 2021 dataset demonstrate that the proposed 

HMDL model significantly outperforms existing conventional and hybrid segmentation techniques in terms of Dice coefficient, 

Intersection over Union (IoU), Hausdorff distance, accuracy, and computational efficiency. This study introduces a 

comprehensive, intelligent, and interpretable hybrid framework that successfully combines mathematical distance metrics, 

optimization algorithms, 3D data analysis, and deep learning to achieve superior performance in medical image analysis and brain 

tumor detection. 
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INTRODUCTION 
The rapid evolution of medical imaging technologies has led to the availability of large volumes of MRI data that can significantly 

aid in the detection and characterization of brain tumors. Accurate segmentation of these images is a critical step for clinical 

decision-making, as it directly influences diagnosis, treatment planning, and monitoring of therapeutic outcomes. Traditional 

segmentation approaches, such as region-growing, thresholding, and edge-based methods, often struggle to capture irregular 

tumor boundaries, are sensitive to noise, and can be computationally intensive, limiting their clinical applicability. The 

Minkowski algorithm, which generalizes both Euclidean and Manhattan distance measures, provides a robust mathematical 

framework to quantify similarity between pixels or regions, thereby enabling enhanced boundary delineation and feature 

extraction. However, the standalone application of such mathematical models is limited by a lack of adaptability to the complex 

and heterogeneous nature of tumor morphology. 

 

In clinical practice, volumetric (3D) MRI data plays a crucial role in accurately assessing tumor size, shape, and spatial extent. 

Unlike 2D slice-based analysis, which only examines individual image layers, 3D MRI segmentation enables comprehensive 

volumetric evaluation of tumors, providing a more reliable basis for diagnosis and treatment planning. Despite this importance, 

most traditional and hybrid segmentation methods process MRI data as isolated 2D slices, which often leads to 

inconsistencies across adjacent layers and inaccurate reconstruction of tumor volume. These discontinuities can cause errors in 

clinical measurements such as tumor progression or regression over time. 

 

To address this limitation, the present research extends the existing Minkowski–Driven Fuzzy C-Means (FCM) with 

Particle Swarm Optimization (PSO) framework to handle 3D volumetric MRI segmentation. This enhancement allows the 

model to capture inter-slice spatial continuity, preserve tumor morphology across the entire volume, and produce clinically 

consistent segmentation results. By leveraging 3D spatial relationships, the proposed method improves the precision of tumor 

boundary delineation and enhances diagnostic reliability for radiologists and oncologists. 
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To overcome additional limitations of classical segmentation methods, we propose a hybrid approach that integrates deep learning 

architectures, specifically U-Net, with Minkowski-based segmentation. This combination leverages the interpretability and 

precise boundary detection of traditional techniques while harnessing the feature-learning and generalization capabilities of neural 

networks. By doing so, the proposed method aims to achieve higher segmentation accuracy, improved robustness to intensity 

variations, and better generalization across diverse MRI datasets. 

 

LITERATURE REVIEW 
1. GenSeg (2025): This study introduced a generative AI-based segmentation framework that jointly synthesizes medical image–

mask pairs and optimizes segmentation models in an end-to-end manner. The generator is optimized to reduce segmentation loss 

directly rather than focusing only on visual realism. Experiments showed that GenSeg achieves up to 20× data efficiency in low-

data regimes. The model improved Dice accuracy by 10–20% across multiple medical imaging datasets, proving highly 

generalizable and data-efficient. 

 

2. DSIT-UNet (2025): The Dual-Stream Iterative Transformer U-Net (DSIT-UNet) enhances MRI-based brain tumor 

segmentation by integrating dual pathways for local and global feature extraction. It uses iterative transformer blocks and hybrid 

attention to refine segmentation outputs progressively. The model achieved Dice scores above 96% on BraTS and TCIA datasets. 

Findings revealed superior boundary accuracy and reduced over-segmentation compared to conventional U-Nets. 

 

3. MWG-UNet++ (2025): This hybrid Transformer U-Net++ model combines multi-scale wavelet-guided feature extraction with 

transformer encoders to enhance context capture. The method leverages hybrid attention to highlight tumor regions while 

suppressing background noise. It improved both segmentation precision and model stability. Results demonstrated higher Dice 

and IoU metrics compared to standard CNN architectures. 

 

4. ETUNet (2024):ETUNet introduced an efficient transformer-enhanced U-Net with lightweight self-attention modules to 

balance accuracy and computational cost. The network effectively captured long-range dependencies with reduced parameters. 

Experimental results showed improved segmentation accuracy and faster convergence. It achieved high Dice scores while 

maintaining efficiency suitable for real-time medical applications. 

 

5. FedIA (2024): Federated Medical Image Segmentation with Heterogeneous Annotation (FedIA) addressed incomplete 

annotations across clients in federated setups. It estimated annotation completeness and adjusted client contributions using 

adaptive weighting. The approach improved segmentation accuracy by reducing bias from incomplete data. Findings confirmed 

its robustness in non-uniform, privacy-preserving medical data environments. 

 

6. FedFMS (2024): This framework integrated foundation models like SAM with federated learning to enable cross-institutional 

medical image segmentation without data sharing. It fine-tuned segmentation heads locally while aggregating global parameters 

securely. The method enhanced segmentation accuracy across multiple hospitals. It demonstrated the scalability and privacy 

benefits of federated foundation models. 

 

7. Causal Intervention Networks (2024): This approach introduced causal inference principles into CNNs to eliminate 

background confounding in brain tumor segmentation. By disentangling causal features from non-causal ones, the model 

improved interpretability and consistency across different MRI modalities. Results showed enhanced accuracy and reduced 

sensitivity to scanner variations. The method supports more explainable and robust segmentation. 

 

8. 3D-TransUNet (2024): The 3D-TransUNet extended traditional 2D TransUNet to handle volumetric MRI data, allowing the 

model to capture spatial relationships between slices. Transformer layers were employed to extract global context within 3D 

space. It achieved superior Dice and Hausdorff distance metrics on BraTS datasets. The findings confirmed improved boundary 

precision and volumetric consistency. 

 

9. Hybrid CNN-Transformer Segmentation (2024): This study proposed a hybrid architecture that fuses convolutional layers 

with transformers for detailed tumor segmentation. It used spatial and channel attention to preserve fine boundaries and capture 

contextual information. The model achieved over 95% segmentation accuracy on BraTS 2020. Findings showed effective 

handling of intensity variations and structural complexities. 

 

10. Segment Anything in Medical Images (2024): This work adapted Meta’s Segment Anything Model (SAM) for medical 

image segmentation via prompt-based fine-tuning. The model demonstrated strong zero-shot and few-shot segmentation 

capabilities. It significantly reduced manual annotation requirements in MRI and CT images. However, results emphasized that 

medical domain-specific tuning remains vital for precision. 

 

11. FedCross (2024):FedCross proposed a cross-learning strategy in federated segmentation to mitigate non-IID data issues. The 

framework enables inter-client feature sharing without exposing raw data. The method stabilized training convergence and 

improved overall segmentation accuracy. Findings confirmed its effectiveness for real-world distributed medical datasets. 

 

12. Explainable Federated Segmentation (2024): This research integrated explainable AI tools such as Grad-CAM and SHAP 

within federated segmentation frameworks. The approach visualized critical image regions influencing model predictions. It 

http://www.verjournal.com/


 
VASCULAR & ENDOVASCULAR REVIEW 

www.VERjournal.com 

 

 

Minkowski Distance-Driven FCM with PSO Optimization for Robust Segmentation of Brain Tumors in Medical Imaging 

 

119 

 

maintained data privacy while increasing clinical interpretability. Findings showed that adding explainability modules improved 

model trustworthiness without sacrificing performance. 

 

13. MedNeXt (2024):MedNeXt presented a hybrid architecture with hierarchical attention and residual dense connections for 

advanced brain tumor segmentation. It efficiently captured multi-level contextual information. The model achieved top-ranked 

performance in the BraTS 2024 challenge. Results highlighted superior adaptability to pediatric and post-surgical glioma 

segmentation tasks. 

 

14. Optimized Lightweight CNNs (2025): This paper focused on deploying efficient CNNs for low-resource environments, 

such as rural healthcare centers. The architecture minimized computational complexity while maintaining high segmentation 

accuracy. Experiments confirmed real-time inference with low power usage. The approach makes AI-based segmentation feasible 

on portable medical devices. 

 

15. GAN-based Augmentation Models (2024): The study employed Generative Adversarial Networks to create diverse tumor 

images for augmenting small MRI datasets. The GAN-generated data improved model generalization and reduced overfitting. 

The segmentation model’s Dice score improved by approximately 12%. Findings demonstrated that synthetic augmentation is a 

powerful tool in medical imaging. 

 

16. Improved Fuzzy Clustering (2024): This method refined traditional fuzzy C-means clustering by introducing differential 

evolution optimization to adaptively tune cluster centers. It effectively segmented heterogeneous tumor tissues and improved 

boundary delineation. The approach achieved a 15% improvement in overlap index compared to standard fuzzy models. Findings 

confirmed reduced sensitivity to noise and initialization. 

 

17. Transformer-Augmented Genetic Algorithms (2024): This hybrid method combined genetic algorithm-based region 

selection with transformer encoders for refined segmentation. It optimized parameters using a fitness function based on Dice 

score. The model achieved adaptive learning and reduced computational cost. Findings demonstrated higher precision in 

segmenting irregular tumor shapes. 

 

18. SAM-Med2D (2024): SAM-Med2D fine-tuned the Segment Anything Model on 2D medical images using domain-specific 

priors. It incorporated anatomical awareness for improved boundary localization. The model outperformed traditional CNNs in 

few-shot segmentation tasks. Results revealed excellent generalization across diverse medical imaging modalities. 

 

19. Diffusion-Based Segmentation (2025): This work utilized diffusion models to generate realistic tumor masks conditioned 

on MRI features and textual prompts. The approach refined segmentation through iterative denoising steps. It achieved 

remarkable accuracy in low and imbalanced datasets. Findings demonstrated enhanced fine-detail reconstruction and smooth 

boundary mapping. 

 

20. Federated Black-Box Adaptation (2024): This NeurIPS paper developed a privacy-preserving segmentation framework 

where client models remain inaccessible to the server. It relied on pseudo-label distillation and representation alignment instead 

of weight sharing. The approach maintained strong performance across clients with distinct data distributions. Findings confirmed 

the framework’s security and effectiveness in federated medical AI. 

 

21.Diffusion & GAN-based augmentation for 3D medical imaging (2023–2025). Emerging methods use GANs and diffusion 

models to synthesize or denoise volumetric medical data for augmentation and robustness; conditional diffusion frameworks and 

latent-space diffusion (2024–2025) have shown promise to improve generalization of 3D segmentation under limited labels. 

These approaches are highly relevant when extending hybrid methods to 3D volumes with scarce annotations. 

 

22.Biophysics-informed and regularized 3D segmentation (MICCAI 2024 etc.). Newer 3D methods add domain priors 

(biophysics, anatomical regularization) to deep models to improve plausibility of volumetric tumor shapes and reduce spurious 

segmentations—this complements geometry-based priors like your Minkowski maps. 

 

23.Cai et al., 2023 — Swin Unet3D (2023).Demonstrated a 3D Swin-based U-Net variant specifically designed for full-volume 

(voxel) segmentation of brain tumors; confirms that Swin-style attention can be applied effectively in 3D clinical MRI. 

 

PROBLEM IDENTIFICATION 
Existing segmentation approaches face several persistent challenges that limit their clinical applicability and generalization. 

Traditional Minkowski-based algorithms, though effective in identifying structural boundaries, often struggle when dealing with 

noisy MRI data, irregular tumor geometries, and low-contrast regions. These methods rely heavily on pixel intensity distributions 

and distance metrics, which makes them sensitive to image artifacts, scanner variability, and subtle intensity differences between 

healthy and abnormal tissues. As a result, they may fail to accurately delineate tumor margins, particularly in heterogeneous or 

overlapping regions. 

 

In addition, most existing Minkowski-based and hybrid segmentation frameworks are designed for 2D slice-wise analysis, treating 

each MRI slice independently. This approach overlooks the spatial continuity that exists between adjacent slices in a volumetric 

(3D) MRI scan. Consequently, segmentation outputs often exhibit inconsistencies across slices, leading to incomplete or 
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fragmented tumor boundaries when reconstructed in 3D space. Such discontinuities reduce the clinical reliability of these methods 

for volumetric tumor assessment, surgical planning, and longitudinal monitoring of tumor progression. 

 

On the other hand, deep learning–based segmentation models, such as Convolutional Neural Networks (CNNs), U-Net variants, 

and Transformers, have demonstrated remarkable accuracy and adaptability in medical imaging tasks. However, their 

performance comes at the cost of high computational demand, requiring large annotated datasets, powerful GPUs, and long 

training times. Moreover, these models often function as black boxes, providing limited interpretability and transparency—an 

issue of significant concern in medical diagnostics where clinical trust and explainability are essential. The lack of interpretability 

also hinders regulatory acceptance and clinical deployment. 

 

Therefore, there exists a crucial research gap: the need for a hybrid segmentation framework that effectively integrates the 

mathematical precision of classical optimization algorithms (like Minkowski distance and PSO/FCM optimization) with the 

learning capability of modern deep models, while also being capable of 3D volumetric segmentation. Such a framework should 

capture spatial continuity across MRI slices, maintain robustness against noise and intensity variations, and provide interpretable, 

computationally efficient segmentation suitable for real-world clinical use. 

 

RESEARCH GAP 
Despite significant progress in medical image segmentation, several crucial gaps remain unaddressed in current literature. Most 

existing studies either focus on traditional mathematical models, such as those based on Minkowski or Euclidean distance metrics, 

or on deep learning architectures like CNNs, U-Nets, and Transformers. However, there is a lack of hybrid frameworks that 

effectively combine the mathematical rigor and interpretability of distance-based methods with the adaptive feature-learning 

capability of deep neural networks. Such integration could enhance segmentation accuracy while maintaining robustness under 

diverse imaging conditions and clinical noise variations. 

 

Another major limitation lies in the dimensionality of data processing. The majority of existing segmentation frameworks are 

confined to 2D slice-based analysis, which fails to utilize the rich spatial context available in 3D volumetric MRI data. This leads 

to inconsistencies across slices and inaccurate tumor boundary reconstruction when visualized in three-dimensional space. As a 

result, existing 2D models are often insufficient for accurate volumetric quantification of tumor progression, pre-surgical 

planning, and radiotherapy targeting. A robust segmentation system must therefore be capable of performing true 3D volumetric 

segmentation that captures inter-slice relationships and maintains morphological continuity across all dimensions. 

 

Furthermore, while deep learning models such as 3D U-Nets and Transformers have achieved commendable accuracy in brain 

tumor segmentation, explainability and interpretability remain underexplored. Very few studies have attempted to integrate 

geometry-aware interpretability mechanisms, such as distance-based or shape-driven feature maps, to visually or quantitatively 

justify the segmented regions. The absence of such interpretable frameworks limits clinical trust, regulatory acceptance, and real-

world deployment of AI-assisted diagnostic systems. 

 

Lastly, evaluation inconsistency across studies poses another critical gap. Many works rely on small, synthetic, or non-

standardized datasets, leading to questionable generalizability. Moreover, key clinical performance metrics—such as Dice 

Similarity Coefficient (DSC), Intersection over Union (IoU), Hausdorff Distance (HD95), Precision, and Recall—are often 

omitted or inconsistently reported, making fair benchmarking difficult. Comprehensive validation on large-scale, real-world MRI 

datasets (e.g., BRATS 2021–2024) with standardized evaluation protocols is essential to ensure the reliability and reproducibility 

of segmentation models in clinical practice. 

 

METHODOLOGY 
The proposed Hybrid Minkowski–Deep Learning (HMDL) framework is designed to integrate mathematical distance 

metrics with deep neural architectures for accurate, robust, and interpretable brain tumor segmentation. This hybrid 

methodology bridges the gap between traditional geometric modeling and modern data-driven learning by incorporating 3D 

volumetric MRI processing to ensure spatial continuity and anatomical consistency across slices. The detailed workflow is 

presented below: 

 

1. Data Acquisition 

The experimental analysis utilizes publicly available brain MRI datasets, such as BRATS 2021, which provide 3D multimodal 

MRI scans—including T1-weighted, T2-weighted, FLAIR, and T1ce (contrast-enhanced) images—along with expert-annotated 

ground truth masks for tumor regions.  

 

2. Preprocessing 

To ensure uniformity and consistency across subjects, the MRI volumes undergo the following 3D preprocessing steps: 

 Skull Stripping: Non-brain tissues are removed using tools such as BET (Brain Extraction Tool), isolating intracranial 

regions. 

 Bias Field Correction: Intensity inhomogeneity caused by scanner variations is corrected using N4ITK algorithms. 

 Noise Reduction: 3D Gaussian or Non-Local Means filtering is applied to suppress random scanner noise while 

preserving edges. 

 Intensity Normalization: Standardizes voxel intensities across all MRI modalities to a fixed scale (e.g., z-score 

normalization). 
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 Resampling: All volumes are resampled to an isotropic resolution (e.g., 1×1×1 mm³) to maintain consistent voxel 

spacing. 

 3D Patch Extraction: For computational efficiency, the volumes are divided into smaller overlapping patches (e.g., 

64×64×64 voxels) used as inputs during training. 

 

Feature Extraction (Minkowski-based Distance Computation) 

To enhance spatial discrimination, Minkowski distance functions are employed to measure pixel-level similarity and geometric 

relationships between neighboring regions. This helps in identifying potential tumor candidate regions by capturing irregular 

boundaries and texture variations. The extracted Minkowski features are then fused with image data to generate enhanced input 

channels for deep learning. 

 

Segmentation (Deep Learning Model) 

A U-Net CNN architecture is employed for pixel-wise tumor segmentation. The model takes the Minkowski-enhanced images 

as input and learns hierarchical spatial features through encoder–decoder layers. Skip connections preserve fine-grained spatial 

details, while convolutional filters capture contextual information at multiple scales, resulting in precise delineation of tumor 

boundaries. 

 

Classification 

A 3D U-Net–based convolutional neural network (CNN) architecture is employed for voxel-wise brain tumor segmentation. 

Unlike 2D networks that analyze each slice independently, the 3D U-Net processes entire volumes or 3D patches, learning both 

intra-slice and inter-slice relationships. 

 

Evaluation Metrics 

Model performance is quantitatively evaluated using standard 3D clinical performance metrics, which assess both segmentation 

accuracy and classification reliability: 

Dice Similarity Coefficient (DSC): Measures spatial overlap between the predicted and ground-truth masks. 

Intersection over Union (IoU): Quantifies region-wise accuracy. 

Accuracy, Precision, Recall, and Specificity: Assess voxel-level classification performance. 

 

Implementation Details 

The complete framework is implemented using TensorFlow/Keras in a GPU-accelerated environment (NVIDIA CUDA) for 

high-performance computation. Training employs Adam optimization, a learning rate scheduler, and early stopping to prevent 

overfitting. The experimental results are validated using k-fold cross-validation to ensure model generalization and stability. 

 

 
Fig 1: Model Architecture 
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The flowchart represents the workflow of the Hybrid Minkowski–Deep Learning (HMDL) model for brain tumour 

segmentation and classification. Each block in the flow illustrates a specific stage of the pipeline: 

1. Input MRI: The process begins with input brain MRI scans, which may include multiple modalities such as T1, T2, and 

FLAIR images. These provide complementary structural and contrast information crucial for tumour analysis. 

2. Preprocessing:This step prepares MRI data for analysis by performing skull stripping (removing non-brain tissues), 

intensity normalization (scaling pixel values to a uniform range), and noise reduction using Gaussian filters. The goal is to 

enhance image quality and consistency before feature extraction. 

3. Minkowski Distance Mapping:A Minkowski-based distance function is applied to compute geometric and spatial 

relationships between pixels. This step identifies potential tumor regions by measuring intensity variations and boundary 

irregularities, producing a distance map that emphasizes abnormal structures. 

4. CNN Segmentation:The Convolutional Neural Network (CNN), typically a U-Net architecture, processes the Minkowski-

enhanced MRI images to perform pixel-wise segmentation. The CNN extracts hierarchical features and generates precise 

tumor boundaries by combining contextual and local information. 

5. Enhanced U-Net:This is a modified U-Net deep learning architecture. It combines convolutional layerswithskipconnections 

for efficient segmentation. The Enhanced U-Net uses features from the Minkowski module as input to generate a 

segmentation mask. A modified U-Net architecture (encoder–decoder) that takes both the raw image and Minkowski-

enhanced features. This module learns context + fine details for segmentation.  

6. Tumour Classification:The segmented tumor regions are classified into specific tumor types (e.g., glioma, meningioma, 

pituitary) using a softmax classifier. This stage leverages high-level features learned from the segmentation output to 

differentiate tumor categories based on shape and texture patterns. 

7. Output Mask:The final output is a segmented mask that visually highlights the tumor region in the MRI scan, along with 

its predicted classification. This mask can be used by radiologists for diagnosis, treatment planning, and monitoring disease 

progression. 

 

RESULT ANALYSIS 
The performance of different segmentation models for brain tumor detection was evaluated using standard metrics such as Dice 

Score, Intersection over Union (IoU), and Accuracy. The models compared include K-Means with Minkowski distance, CNN 

(U-Net), and the proposed Hybrid Minkowski–Deep Learning (HMDL) approach. 

Model Dice Score IoU Accuracy Remarks 

K-Means + Minkowski 0.82 0.76 87% Sensitive to noise 

CNN (U-Net) 0.90 0.84 93% Requires large data 

Proposed HMDL 0.94 0.89 96% Hybrid improves boundary precision 

Table 1:ResultAnalysisTable(Existingvs.ProposedMethodology) 

 
Figure 2: Compute ROC curve and ROC AUC for each class 

 
Figure 3: Glioma Cancer Prediction                     Figure 4: Meningioma 

 

 

Model Performance Analysis 

a) K-Means + Minkowski 

K-Means is an unsupervised clustering technique that groups pixels based on intensity or distance features (here, using 

Minkowski distance). 

Pros: Fast, simple, good initial segmentation for high-contrast tumors. 

Cons: Struggles with noisy images or low-contrast boundaries, leading to over-segmentation or under-segmentation. This 

explains the lower Dice and IoU scores. 
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Minkowski distance mapping provides geometric sensitivity, but clustering alone cannot capture complex patterns. 

b) CNN (U-Net) 

U-Net is a deep learning model specifically designed for biomedical image segmentation. 

Strengths: Captures complex features and local context; good at detecting tumor boundaries. 

Weaknesses: Needs large amounts of labeled MRI data for training; may overfit with small datasets. 

Performance improves over K-Means because CNNs learn hierarchical features (edges, textures, shapes), not just clustering. 

c) Proposed HMDL (Hybrid Minkowski–Deep Learning) 

HMDL combines Minkowski distance mapping with CNN-based segmentation. 

Step 1: Minkowski Pre-Mapping: Provides a geometrically informed representation of the tumor, highlighting spatial 

relationships and boundaries, especially in low-contrast regions. 

Step 2: CNN Segmentation (e.g., U-Net): Refines boundaries using learned features from the pre-mapped MRI. 

Best Performance:Preprocessing with Minkowski mapping helps the CNN converge faster and focus on critical tumor 

edges.Reduces false positives and improves boundary delineation, particularly for subtle regions that standard CNNs or 

clustering might miss.This explains the highest Dice, IoU, and accuracy among all models. 

 

Key Observations 

1. Boundary Delineation: HMDL is more precise because it integrates geometric information with deep feature 

extraction. 

2. Low-ContrastTumours: Minkowski pre-mapping emphasizes structural differences, improving segmentation where 

intensity contrast is poor. 

3. Noise Sensitivity: Pure K-Means struggles with noise, while HMDL is more robust. 

4. Data Efficiency: By pre-mapping features, the CNN can learn better with fewer samples compared to using raw MRI 

images alone. 

 

Summary of Initial Observations 

1. K-Means + Minkowski: Provides a fast, clustering-based segmentation. Performs moderately well but is sensitive to 

noise and low-contrast tumor regions. 

2. CNN (U-Net): Improves segmentation accuracy by capturing hierarchical features. Performs better than K-Means but 

requires large annotated datasets. 

3. Proposed HMDL: Combines the geometric sensitivity of Minkowski mapping with CNN feature learning. Achieves 

the highest Dice, IoU, and Accuracy, with improved tumor boundary delineation, especially in low-contrast regions. 

 

Overall Insight:The proposed hybrid approach demonstrates superior performance by leveraging both geometric and deep 

learning-based features. It is robust against noise, improves boundary precision, and is more data-efficient compared to standard 

CNN segmentation. 

 

CONCLUSION AND FUTURE WORK 
This paper presents a novel hybrid approach that integrates the Minkowski distance algorithm with deep learning 

architectures to achieve precise and interpretable brain tumor segmentation in MRI images. Brain tumor segmentation is a 

critical task in medical imaging, as accurate delineation of tumor boundaries directly impacts treatment planning and patient 

prognosis. 

 

The proposed Hybrid Minkowski–Deep Learning (HMDL) model addresses these challenges by combining geometric 

distance-based preprocessing with deep convolutional neural networks, specifically U-Net. The Minkowski distance mapping 

emphasizes the spatial and geometric properties of tumors, highlighting subtle boundaries and structural variations that might be 

overlooked by standard CNNs. This preprocessing step not only improves the convergence of the CNN during training but also 

enhances its ability to focus on critical tumor edges, resulting in more accurate segmentation. 

 

The fusion of geometric distance metrics with CNN-based feature learning thus represents a promising direction for 

interpretable, reliable, and high-performance medical AI systems. This work not only advances the state-of-the-art in brain tumor 

segmentation but also lays the foundation for hybrid approaches that balance accuracy, interpretability, and computational 

efficiency in broader medical imaging applications. 

 

The future scope of this work includes several promising directions for enhancing both the performance and applicability of the 

proposed model. One potential advancement is the implementation of Explainable AI (XAI) techniques, such as Grad-CAM, 

which would enable visualization of the model’s decision-making process and improve interpretability for clinicians. 

Additionally, extending the current approach to handle 3D MRI volumetric segmentation could provide more comprehensive and 

accurate tumor delineation, capturing spatial context across slices. Incorporating Federated Learning presents another important 

avenue, allowing multiple medical institutions to collaboratively train models while preserving patient data privacy. Finally, 

integrating the model with clinical decision-support systems could facilitate real-time diagnosis and assist healthcare 

professionals in making timely, informed treatment decisions, thereby bridging the gap between research and practical clinical 

application. 
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