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ABSTRACT  

The security and privacy concerns of the Artificial Intelligence (AI) and Brain-Computer Interface (BCI) technology working together 

in the field of modern medicine are complicated. It has not only caused a revolution in neurocommunication, cognitive rehabilitation 

as well as assistive neuroprosthetics, it has also created complex security and privacy challenges. The analogy framework that has 

been used in analysing the security irregularities of the BCI systems implemented based on AI involves 6 layers that include the signal 

acquisition, device firmware, network communication, AI models, side channels, and human interaction. Some of the potential targets 

of adversarial perturbation include an adversarial perturbation, data poisoning, model inversion, signal injection and manipulation of 

firmware-threats, with direct implication on the system integrity and patient safety. The framework enhances data confidentiality, 

operational reliability, and clinical trust through end-to-end threat modeling and simulation. To counter medical-cyber threats, it 

employs a cross-layer defense integrating federated learning, differential privacy, secure firmware attestation, and adaptive noise 

filtering. This unified taxonomy supports secure-by-design AI-BCI systems, ensuring safety, dependability, and ethical integrity in 

medical applications. 
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INTRODUCTION  
One of the most rapidly evolving fields in neuroengineering is the Brain-Computer Interfaces (BCIs) which entails an integration of 

the previously noted fields computational neuroscience, biomedical signal processing, and artificial intelligence (AI) into a bidirectional 

interface between the central nervous system and external products. BCIs also bypass the normal neuromuscular but decode neural 

activity to brain signals into executable commands through the measurement of neural activity, either cortical, subcortical or peripheral 

[1]. This kind of technology may potentially be revolutionary in medicine, particularly, the restoration of sensory or motor functions 

in stroke victims, individuals with spinal cord injuries, amyotrophic lateral sclerosis (ALS), or hemiplegic patients. Through 

electroencephalography (EEG), electrocorticography (ECoG) and intracortical microelectrode arrays, clinicians and researchers are 

able to decode neuronal firing patterns, local field potentials and oscillatory dynamics in order to control prosthetics, exoskeletons or 

even digital communication interfaces [2]. 

 

AI and, in particular, the deep neural networks, reinforcement learning algorithms, and adaptive signal filtering has changed the 

performance of the BCIs, and has improved the signal-to-noise ratio, the accuracy of the decoding, and dynamical personalisation of 

the neural decoding model [3, 4]. The advances have led to the closed-loop neuromodulation, cognitive neurorehabilitation, and the 

neural feedback, which continuously learns through the patient-specific neuroplastic changes. Pattern recognition models built with AI 

can be applied to autonomously adjust both cortical stimulation levels in motor cortex areas, or discover patterns in motor cortex areas 

in the aftermath of a stroke, respectively, when using the approach of deep brain stimulation (DBS) therapy against Parkinson disease 

or neural decoding, respectively [5]. 
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In the biomedical field, AI-assisted BCIs are at the brink of personal medicine and despite the neural replacement. As demonstrated, 

AI-assisted neuroprosthetics can be applied to clinical trials that would help to restore voluntary movements of the limbs in over 70 % 

of patients with the spinal cord injuries [6]. Similarly, EEG classifiers based on AI have achieved a 95% accuracy in detecting epileptic 

seizures to facilitate prompt interventions during emergency treatment [7, 8]. Advanced neurostimulation (such as reinforcement 

learning) systems are also being trialled in adaptive deep brain stimulation (DBS) in Parkinson, and have now demonstrated significant 

improvement in patient outcomes [6]. Nonetheless, the attack surface increases with the extent of AI integration. BCIs are concerned 

with biomedical information most sensitive of all, in terms of thoughts, emotions, and cognitive intentions, which take the form of 

neural patterns. Tampering with or illegal hacking of such information does not only endanger patient confidentiality, but also may 

result in unwanted neural activation, artificial stimulation or inappropriate therapeutic feedback benefits [9, 10 ]. Thus, BCI systems 

protection is not just a cybersecurity issue, but also a matter of clinical safety, medical ethics and patient autonomy. 

 

The neurotechnological systems in respect of BCI security are the security of neural signals, model parameters, integrity of firmware, 

and security of communication channels, with regard to unauthorized access, tampering and exploitation [11, 12]. An as safe BCI must 

be not only capable of providing the confidentiality, integrity, and availability (CIA) of its neural data pipeline, but also capable of 

ensuring that patient safety and medical performance are not compromised [13]. 

 Common AI-based BCIs contain six networking layers: 

● Signal acquisition, where the neural signals are acquired over sensors; 

● Low-level control Data Firmware Low-level control data, which controls the low-level operations; 

● Network communication, forwarding the information to new devices or cloud services; 

● Neural decoding is the AI model processing that occurs; 

● Side-channel emissions, e.g. power, timing or electromagnetic leakage and 

● Human application , adjustment and intellectual communication. 

 

Each of the layers has its own vulnerabilities. Considering the example, an attacker can also offer distorted EEG data when obtaining 

a signal to deceive the medical devices [14]. There is a possibility that the stimulation parameters of implanted neurostimulators can 

be remotely altered by using firmware vulnerabilities. Adversarial samples or model inversion assault can compromise outputs or 

rebuild privacy neural attributes in AI model layers [15]. The above-presented situations demonstrate that the outcome of any 

manipulations, even the minor ones, in a clinical setting can be catastrophic, such as incorrect diagnosis or the inability to control the 

prosthetics. 

 

The current trend is being accelerated to a large extent by the introduction of artificial intelligence into Brain-Computer Interfaces 

(BCIs). Nonetheless, the same development comes at a definite technology-vulnerability trade-off: the more flexible, connected, and 

smart systems become, the more vulnerable they are to the threat of new cyber-neuro attacks. The use of cloud-based machine learning, 

wireless data transmission and automated updates of the firmware are common features of modern BCIs and contribute to better 

usability and scalability, although inevitably, increase the attack surface [16]. This trend is indicative of a larger trend in medical device 

cybersecurity, where technological innovations have been rapidly outpacing the creation of the respective security laws which can be 

shown here: 

 

● It is estimated that the BCI market will hit USD 9.7 billion by 2032 and compound annual growth rate (CAGR) of over 14 

due to AI-enhanced medical uses in the global BCI market, which is estimated to be USD 3.2 billion in 2024 [17]. 

Nevertheless, this has come along with an orgy of ugly acts of corruption of the system. For example: 

● In 2020, the scholars of the University of Washington conducted a spoofing attack of neural signals to cross-check EEG-

based authentication systems, and they could penetrate the system, masquerading as a non-user [18]. 

● In 2021, arbitrary injections of adversarial perturbation on the BCI data streams minimized the classification accuracy, and 

obliterated the prosthetic control models by up to 35 % [19]. 

● The testing of the implantable neurostimulators ( Medtronic Activa platform ), has shown areas of vulnerability of possible 

remote re-programming its parameters as a possible dire clinical safety risk [20]. 

Also, model inversion attacks have been reproduced by researchers and can form mental images of trained neural decoders revealing 

previously unrecognised threats to cognitive privacy [21]. 
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This type of vulnerability does not only cause problems to the malfunctioning of devices but it poses a direct threat to the psychological 

autonomy and neurological security. It is possible that the adversaries will interfere with the AI models or change the feedback loops 

of stimulation, leading to patients developing an uncontrollable movement of the muscles, emotional regulation, or cognitive 

distraction. As such, current medical fraternity is in dire need of a new demand, that is, a compromise between the technological 

superiority and the robust neurosecurity policies that would guarantee credibility, robustness, and moral rectitude. Despite the fact that 

the phenomenon of cybersecurity of the medical devices is attracting an increasingly growing number of people, AI-based BCIs are 

not safe, and, what is more, they are not regulated. The existing systems tend to treat those systems as ordinary Internet of Things (IoT) 

devices, and do not mention that they have their own form of neural data, real-time clinical demands and ethical concerns. Such gaps 

are mentioned in this paper by discussing AI-enabled BCIs in relation to layers of security. Specifically, we: 

● Name and categorize vulnerabilities to six AI-BCI layers of operation of the system; 

●  Assess threat model of simulation-based adversarial attacks on accuracy of decoding, patient safety, and data confidentiality 

and 

● In our Cross-Defence Strategies  cross-layer safeguards are advised , e.g. differentiated privateness, fed learning,   safe 

attesting firmware, and adaptive noise suppression. 

 

BACKGROUND AND RELATED WORK 
The convergence of neuroscience, biomedical engineering, and artificial intelligence (AI) has given rise to highly sophisticated 

Brain–Computer Interface (BCI) systems that decode neural activity into actionable digital commands. Understanding the 
architecture, medical applications, and security literature of AI-powered BCIs is essential to identify where vulnerabilities arise. This 
section provides a foundational overview of the BCI system architecture, the integration of AI in neurotechnology, and an analysis 
of prior studies that inform current research gaps. Each subsection builds upon the layered security model that underpins the 
subsequent threat assessment and defense taxonomy presented later in the paper. 
 

2.1 Brain–Computer Interface Architecture 

A Brain–Computer Interface (BCI) establishes a direct neurocomputational bridge between the human nervous system and external 
digital devices, enabling neural activity to be interpreted, processed, and converted into actionable out- puts. Functionally, it can be 
conceptualized as a layered transformation pipeline, where biological signals undergo a series of computational refinements—each 
stage introducing a new abstraction of the brain’s electrical language [22]. Figure 1 shows the basic implementation of Artificial 
Intelligece BCI Architecture where data from Signal layer goes to Human application layer 
 

Figure 1: Schematic representation of the AI–BCI architecture

 
At the foundation lies the Signal Acquisition Layer, where neural poten- tials are recorded using modalities such as 
Electroencephalography (EEG), Elec- trocorticography (ECoG), or intracortical microelectrode arrays (MEAs). The recorded 
waveform is represented as [23]: 

𝑆(𝑡) = ∑

𝑛

𝑖=1

𝑉𝑖(𝑡) +  𝜂(𝑡)  

where Vi(t) denotes the voltage potential recorded at electrode i, and η(t) represents biological and environmental noise. This signal 
encodes subtle electrophysiological signatures—such as sensorimotor rhythms, event-related po- tentials (ERPs), and oscillatory 
dynamics—that convey the subject’s intent or cognitive state. The “magic” at this layer is the conversion of neural firing patterns 
into measurable analog voltages, effectively digitizing thought at its source. 

The Preprocessing and Normalization Layer [24], denoted N (·), cleans and stabilizes these raw voltages for further analysis. 
Operations such as artifact re- jection, band-pass filtering, and Common Average Referencing (CAR) remove ocular, muscular, and 
environmental distortions. Mathematically, this transfor- mation can be expressed as: 

𝑆𝑛(𝑡) =  𝑁(𝑆(𝑡)) =
𝑆(𝑡) − µ𝑆

𝜎𝑠
 

where µS and σS denote the mean and standard deviation of the recorded signal. After this step, the continuous analog data becomes 
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a structured neural feature tensor, retaining only neurophysiologically relevant activity (e.g., power spectra, phase–amplitude 
coupling). This layer’s transformation extracts the brain’s “signal of intent” from the background of biological chaos. 

The Transmission and Firmware Encoding Layer, T (·), converts these preprocessed neural features into digital packets suitable for 
machine interpre- tation [25]. Firmware modules perform Analog-to-Digital Conversion (ADC), times- tamp alignment, data 
compression, and error correction, ensuring temporal co- herence across multiple channels: 

 
E(t) = T (SN (t)) = Q · ADC(SN (t)) + δT   

where Q denotes the quantization factor and δT represents transmission latency. Here, analog voltages are transformed into discrete 
binary vectors en- capsulated in data frames ready for wireless communication (e.g., Bluetooth or Zigbee). Conceptually, the neural 
signal becomes an information-carrying bitstream—a computational proxy of cognition. 

At the core of the architecture lies the AI Decoding Layer, fAI (·) [26], which transforms these encoded data streams into meaningful 
predictions. Deep learn- ing architectures such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and 
Transformers are used to decode temporal–spatial neural patterns into symbolic or motor outputs: 

 
Y = fAI (E(t)) = arg max P (y|E(t), θ),  

where Y represents the set of possible output classes (e.g., left/right move- ment, cognitive state), and θ are trainable parameters. At 
this stage, the rep- resentation transitions from a signal space to an intention space—where neural information becomes actionable 

command probability. 
 
The Human Interaction and Feedback Layer closes the loop by con- verting decoded outputs into sensory or motor feedback: F (t) = 
g(Y ) + ξ(t),  where g(·) denotes the actuator or feedback mapping function, and ξ(t) models biological adaptation noise. For 
instance, in neuroprosthetic systems, Y may drive limb actuators, while in neurorehabilitation, it may modulate visual or auditory 
feedback [27]. Over time, this feedback reinforces synaptic plasticity through Hebbian adaptation(∆w = ηxy) allowing the patient’s 
brain to refine its firing patterns for more accurate control—a phenomenon known as learning through the loop. Collectively, the full 

BCI data flow can be summarized as: 
 

Y = fAI (T (N (S(t)))) + ϵ,  
where ϵ captures cumulative physiological and computational noise. In essence, the BCI pipeline follows a progressive and 
biologically meaningful transformation: 
 

                𝑆(𝑡) → 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 → 𝐸𝑛𝑐𝑜𝑑𝑒𝑑 𝐷𝑎𝑡𝑎(𝐴𝐼) → 𝑌  
each stage representing a new layer of neurosemantic interpretation—from cortical voltage to digital feature, from digital feature to 
algorithmic meaning, and from meaning to clinical action. Every layer, therefore, performs its own form of “medical magic”: captur- 

ing, cleaning, encoding, decoding, and reintegrating cognition within a closed adaptive loop. In the upcoming sections, we will 
examine each layer’s opera- tional mechanics and potential vulnerabilities in greater detail, demonstrating how precision 
neuroengineering safeguards the integrity of this cognitive–digital bridge 
 

2.2 AI in Neurotechnology: Medical Applications and Risks 
Artificial Intelligence (AI) that enhancing the Brain-Computer Interface (BCI) systems with the new degree of accuracy, versatility, 
and personalization. The AI-powered BCIs are redefining the prospects of modern medicine, be it the ability to decode neural activity, 

or the restoration of the lost motor or cognitive capabilities. The related technological breakthrough, however, is accompanied with 
greater complexity and exposure. Even deep learning applied with reinforcement learning and neural decoding models has not only 
enhanced clinical outcomes but also introduced a new level of cyber-neuro risk. Spiritually speaking in the description of this two-
facet landscape of innovation and exposure, Table 1 is a summary of some of the key medical applications of AI-enabled BCIs, the 
algorithms on which they operate, the clinical advantage they have, and the security or privacy risks they pose. This overview 
constitutes a cursory foundation on why medical neurotechnology is both emerging and expanding its digital attack interface 
 

TABLE 1: AI APPLICATIONS AND ASSOCIATED SECURITY RISKS IN MEDICAL BCIS 

Medical Application AI Technique 

Used 

Clinical Utility Likely 

Attack 

Vector 

Potential 

Security / 

Privacy Risk 

Example 

Study 

Motor Prosthesis 
Control (ALS, Spinal 

Injury) 

CNNs, RNNs 
for EEG/ECoG 

decoding 

Enables 
voluntary limb 

movement and 
robotic assistance 

Adversarial 
signal 

injection 
during neural 
decoding 

Altered intent 
recognition 

may trigger 
unintended 
limb movement 
or device 
paralysis 

[28], [29] 
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Neurorehabilitation 
Post-Stroke 

Reinforcement 
learning and 
transfer learning 

Adaptive 
feedback-based 
therapy 
enhancing motor 

recovery 

Data 
poisoning in 
training 
feedback loop 

Corrupted 
reward 
feedback can 
degrade 

rehabilitation 
outcomes 

[30] 

Neurostimulation for 

Epilepsy & 
Parkinson’s 

Deep 

reinforcement 
learning (DRL) 
for closed-loop 
stimulation 

Dynamically 

adjusts 
stimulation to 
reduce tremors or 
seizures 

Firmware 

manipulation 
or replay 
attack 

Over- or under-

stimulation 
causing 
physiological 
harm 

[31] 

Cognitive & 
Emotional State 
Monitoring 

Transformer-
based EEG 
emotion 
recognition 

Supports 
affective 
computing and 
mental health 
tracking 

Model 
inversion or 
side-channel 
inference 

Unauthorized 
extraction of 
emotional or 
cognitive states 

[32] 

Speech 
Reconstruction from 
Brain Signals 

Variational 
Autoencoders 
(VAE) and 
Seq2Seq models 

Restores verbal 
communication 
in locked-in 
patients 

Model 
inversion and 
gradient 
leakage 

Leakage of 
private neural 
data or speech 
content 

[33] 

As the evidence indicated in Table 1 demonstrates, the trade-off in this context under the implementation of AI in the neurotechnology 
concept is quite obvious: the same architectures that make the system more precise and more personal make them more susceptible 
to cyber-neuro attacks. To use convolutional and recurrent models as an example, they may be implemented successfully to decode 

intent to control a prosthetic since they are susceptible to adversarial signal injections, they may produce unsafe or unintended 
behaviour of the device. Similarly we can poison reinforcement learning models that are utilized to enhance the adaptive 
neurorehabilitation and poison feedback loops. Transformer-based emotion recognition though helpful in the domain of affective 
monitoring offers risks of model inversion that promotes the potential reconstruction of sensitive cognitive information. 
 
Thus, the future of the AI-driven BCIs lies in the performance safety-meets-level protection, in other words, implementing adversarial 
robustness, encryption, and interpretability into neural networks. The defenses will be required on the algorithmic and firmware level 

to be reinforced such that the new generation of intelligent neurotechnologies might not only be innovative but also secure, ethical 
and clinically trustworthy. 
 
 

2.3 Prior Studies on BCI Security and Privacy 
The examination on the security and confidentiality of Brain-Computer Interfaces (BCIs) is undergoing transformation as the neural 
engineering and artificial intelligence advancement soar. Those dealing with hardware stability and wireless networking integrity 

first were examined and included aspects such as signal jamming, bottom-level information leakage and unreliable updates to 
firmware [22]. With the continued release of AI algorithms into neural decoding and neural classification applications, more recent 
work has made studies of weaknesses in algorithms, the most famous being adversarial perturbation, data pollution and privacy 
breach through model inversion. Meanwhile, neuroethical research has raised the social effects of using neural data without consent, 
cognitive manipulation and consent in clinical and research studies. The example literature in these areas is summarized in Table 2 
which reveals that the research area has been expanding in scope both to the lower-level device protection and the high-level AI and 
privacy concern. 
 

TABLE 2: OVERVIEW OF PRIOR RESEARCH ON BCI SECURITY AND PRIVACY 

Study / 
Year 

Primary Focus Methodology Key Observations Identified Limitations 

Bonaci et 

al., 2014 
[34] 

Wireless implant 

communication; 
BCI app 
ecosystems 

Policy + technical 

analysis / threat 
modelling 

Described “brain-

apps” threats and 
showed how BCI 
platforms could leak 
private info (brain-
spyware scenario) 

Conceptual/early — 

limited experimental 
cross-layer testing 
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Meng et al., 
2023 [35] 

EEG privacy / 
user identity 
leakage 

Empirical 
experiments on 
multiple EEG 
datasets; defenses to 

remove identity 
information 

Showed that user 
identity can be 
learned from EEG 
and proposed 

identity-unlearnable 
preprocessing 

Focused on EEG 
datasets; practical 
deployment/consent 
aspects not exhaustively 

tested 

Yu et al., 

2023 [36] 

Adversarial 

robustness in 
EEG 
classification 

Generated EEG 

adversarial 
perturbations (BEAM 
perturbations) and 
attacked DNN 
classifiers 

Small imperceptible 

perturbations can 
cause large (often 
>30%) accuracy 
drops in 
epilepsy/diagnostic 
models 

Attack evaluated in 

offline/bench settings; 
acquisition-layer 
attacks not covered 

Pugh et al., 
2018 [37] 

Firmware / 
implant clinical 
safety 
(brainjacking) 

Conceptual + ethical 
analysis, review of 
implant programmer 
vulnerabilities 

Described 
“brainjacking” risks 
and surveyed 
evidence that 
programming 

consoles and update 
paths could be abused 

Ethics/review paper — 
did not present new 
firmware reverse 
engineering data 

Shen et al., 
2019 [38] 

Model inversion / 
mental-image 

reconstruction 

DNN-based 
reconstruction from 

fMRI (deep image 
reconstruction) 

Demonstrated 
reconstruction of 

seen and imagined 
images from brain 
activity (proof that 
internal 
representations can 
be decoded) 

Work uses fMRI (not 
EEG); controlled lab 

settings with large data 

Nishimoto 
et al., 2011 
[39] 

Visual 
experience 
reconstruction 
(movie stimuli) 

Encoding/decoding 
models from fMRI 
responses to natural 
movies 

Reconstructed visual 
movies from brain 
activity — early 
landmark showing 
feasibility of 

reconstructive attacks 

fMRI-based, requires 
large stimulus sets and 
strong priors 

Magee / 
Livanis 

(reviews), 
2023–2024 
[40] 

Ethical, legal, 
and policy gaps 

in BCIs 

Literature/policy 
review and 

discussion 

Identified regulatory 
gaps and called for 

stronger governance 
of neural data 

Review-based; not 
technical validation 

Federated / 

privacy-
preserving 
EEG works 
(sample), 
2021–2024 
[41] 

Federated 

learning for EEG 
(privacy-
preserving 
models) 

FL experiments on 

EEG datasets; 
evaluated utility and 
privacy gains 

Showed federated 

approaches can keep 
raw EEG local while 
maintaining model 
performance 

Many works did not 

fully evaluate 
adversarial/poisoning 
threats in FL setting 

As much as these works provide a lot of information, majority of them are domain specific - that is they are either too technical or 
too ethical in their styles to give a description of BCI systems. Very few integrate interdependences across hardware, communication 

and AI layers. Moreover, the empirical validation in the context of combination attacks, i.e. when the manipulation of the firmware 
also leads to the manipulation of the AI-based decoding integrity is less supported. A research gap in the existing study is the absence 
of one analytical system to cross-layer threat modeling, which generates an urgent interest. 
 

SECURITY THREAT MODEL AND ATTACK TAXONOMY 
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The use of Brain-Computer Interface (BCI) systems in conjunction with biomedical signal acquisition, neural decoding algorithms, 
and AI-based decision systems inevitably compromises the security of these systems [40 -42]. Contrary to conventional medical 

equipment, BCIs work directly on the electrocorticography (ECoG) signal or electroencephalography (EEG) signals, which are 
personal-specific to neurophysiology, and a security breach is not only a danger to the privacy of data, but also a potential 
neurophysiological risk. The latest clinical and assistive BCIs have been inclined to send information via wireless telemetry, 
preprocessing neural signals in firmware level, and neural signal interpretation AI-based modules. Each of these architecture levels 
is a potential attack target and adversarial manipulation can result in inaccurate motor activity, fraudulent cognitive feedback or even 
a malfunction of neurostimulators and which can be physically or psychologically detrimental to patients. 
 
In order to examine these weaknesses in a systematic fashion, this paper proposes a 6 layer BCI threat model comprising (1) Signal 

Acquisition, (2) Firmware and Embedded Systems, (3) Data Transmission, (4) AI/ML Model Processing, (5) Cloud and Storage 
Infrastructure, and (6) User Interface and Feedback Mechanisms. Risk measurement of the proposed structure (Figure 2) is a measure 
of severity of probabilistic risks where. 

 

𝑅𝑖𝑠𝑘 𝑆𝑐𝑜𝑟𝑒 (𝑅) =
𝐸×𝐼

100
 

and E (Exploitability) and I (Impact) are rated on a scale between 1-100. This enables calculation of a clinical risk measurement 
based on a percentage, which is the probability and the result of adversarial interference. A high-threat zone is a score above 60 % 
typically signalling direct neural stimulation or decision loops under AI control, where any minor scale adversarial perturbation (e.g. 
input noises or firmware spoofing) can invoke aberrant neuro-response patterns or over stimulate the stimulator. 
 

Figure 2 indicates the proposed Six-Layer Threat Model that links the attack surfaces of the neural sensors with patient feedback 
endpoints. The layers highlight their vulnerability vectors, the exploitability gradient, and clinical risk potential which are the 
structural foundations of the attack taxonomy that is introduced in Sections 3.2-3.8. 

 
 
 
 

 

FIGURE 2: Six-Layer Threat Model 
 

3.2 Signal Acquisition Layer 
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Signal acquisition layer is the neural-electronic interface one that records Electrophysiological activity that includes 
Electroencephalography (EEG), Electrocorticography (ECoG), Local Field Potentials (LFPs), and Single-Unit Activity (SUA). These 

neural biosignals consist of changing the activity of cortex in time and frequency that are further digitalized and processed by AI 
algorithms. It is however highly susceptible to electromagnetic interference (EMI), thermal noise and artifactual contamination by 
muscular and ocular means. With the unbelievably low measurable value within the range of 10-100 uV scale, even the tiniest forms 
of adversarial perturbation can cause the driftage of the signal, misclassification of the intent, or even uncontrolled stimulation of the 
motor prostheses.  This layer therefore represents the weakest and the bottom layer of all the six layers of the security model of the 
six layer BCI, and the integrity of the data of the neural data that is the direct determinant of safety and accuracy in the downstream 
(see Table 3). 

 

 
 

 

TABLE 3: ATTACK VECTORS ON THE SIGNAL ACQUISITION LAYER 
 

A bioelectric noise adversarial injector can impose a signal-to-noise ratio (SNR) below 10 dB and trigger deep neural decoders, e.g., 
EEGNet or SincNet, to process inability to differentiate between cortical intention. This may result in mis-actuation of the prosthetic 
or neurostimulation error, may cause iatrogenic injury or cortical overexcitation, which may be harmful. It is also aggravated by 
closed-loop BCIs in which time-varying adaptive feedback may spread the perturbation, and the current neurofeedback therapy 
sessions are being polluted [43]. 

 
 The literature has verified that waveforms injected artificially may consistently induce misselection, and are difficult to detect; a 
table Risk (%) of 63 %. signal injection and 51  %. These exploits are important to clinics in order to spoof EMI. In the case of a 
patient with paralysis (victim of a spinal cord injury), when the prosthetic limb is present, it is possible that, via a successful signal-
injection event (Risk ≈  63), an undesirable movement will occur in the limb, and this can cause an injury; in epilepsy monitoring, 
EM interference (Risk [?] 63). 63) may be experienced. 51) has the ability of giving false positive or false negative results, which 
invalidates safety of patients and clinical judgment [44]. 

 

3.3 Firmware Layer 
It has embedded neurocontroller as the firmware layer controlling analog front-end circuits and digital signal processing (DSP) 
modules. The actual real-time functions are controlled by firmware, such as: stimulation pulse width modulation (PWM), 
implantation of impedance calibration and neural safety threshold. Hack of the firmware, in its turn, not only endangers the protection 
of data but neurophysiological integrity, which may violate ISO 14708 and IEC 60601 medical equipment requirements (see table 
4). 

TABLE 4: ATTACK VECTORS ON THE FIRMWARE LAYER 

Attack Vector Description E I Risk (%) 

Firmware 
Tampering 

Overwriting embedded control logic 65 95 61.7 

Privilege Escalation Exploiting JTAG or UART debug ports 70 90 63 

Bootloader Injection Malicious firmware through OTA updates 75 85 63.7 

Side-channel 
Leakage 

Power and timing side-channels revealing code 60 80 48 

Altered firmware could set stimulation to possibly damaging levels of corticulopathic levels (>3 V/cm) resulting in gliosis, neuronal 

Attack Vector Description Exploitability 
(E/100) 

Impact 
(I/100) 

Risk 
(%) 

Signal Injection Inserting synthetic EEG/ECoG 

currents through electrodes 

70 90 63 

Electromagnetic 
Spoofing 

EMI-based waveform distortion 60 85 51 

Sensor Drift 
Manipulation 

Altering amplifier gain or baseline 
potential 

55 75 41 

Data Interception Eavesdropping on unencrypted 

biosignal buses 

80 60 48 
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death or neurovascular hemorrhage. In addition to that, reinforcement-learning-based BCIs are dependent on the feedback systems 
of the firmware which might not adequately indicate the AI model causing the maladaptive synaptic plasticity and the eventual loss 

of the use of the patient in the long-term. As regards security engineering, cryptographic boot, secure enclave and hardware attestation 
must therefore be incorporated in the firmware to guarantee biomedical safety integrity [45]. 
 
 Mysterious firmware upgrade routes, and debug ports in the air have been reiterated throughout the time of overhyped publicity 
about commercial neuro equipment and implantables. Given that the table Risk (%) is known (100% mapped in the prior scoring in 
other cases and these 61.7 -63.7% tampering or bootloader-injection), an actual firmware infestation would merely change the 
stimulation parameters [46]. This may lead to seizure or non-recoverable tissue damage (high I) and as the attacks on firmware 
continue to occur and are not cleared by reboot, then the risk is long-term and acute, hence, inspired secure boot and attestation as a 

clinical need. 
 

3.4 Network Communication Layer 
Communication Layer is a interface between the implant or wearable with remote AI servers and clinical data systems based on one 
of the following communication protocols: Bluetooth Low Energy (BLE), Wi-Fi, or 5G medical IoT. It takes care of Telemetry, 
Firmware loading and offloading real time neural decoding. This layer is needed to provide confidentiality, availability and integrity 
of relayed cortical data. If in this situation, attack is a threat of interfering with the neuroinformatics pipeline, attackers will be able 

to make use of it to perform remote session hijacking or alter patient-specific cortical mapping (see table 5). 
 

TABLE 5: ATTACK VECTORS ON THE NETWORK COMMUNICATION LAYER 

Attack Vector Description E I Risk (%) 

MITM Attack Intercepting neural data between device and cloud 85 85 72.25 

Replay Attack Reinjecting recorded control packets 75 80 60 

Data Exfiltration Stealing encrypted EEG/ECoG payloads 70 90 63 

Protocol 
Downgrade 

Forcing use of weaker encryption 65 75 48.75 

 
Medical consequences of violation can also be disastrous: a replay attack would transmit valid cortical command packets previously 

transferred, and they would result in unwanted motion of a paralyzed individual. The recent studies showed that a delay of just a 
single second of the packets in the closed-loop deep brain stimulation (DBS) has the potential of disrupting up to 23 % of it hence 
breaking the therapeutic rhythm. This makes the AI model cloud-dependent also which forms the latency windows of attack where 
the attackers are allowed to spoof the decoded signals and are valid to the neural decoder [47].  It has been shown that consumer-
level EEG headsets and certain clinical telemetry stacks are susceptible to wireless telemetry attacks (e.g. unencrypted BLE streams). 
An eavesdropper, a Risk ≈ 72%, that obtains live neural streams, and rewrites them, may steal data in the cognitive-state, and may 
inject commands, a Risk ≈ 63%, which results in unsafe activation of the prosthetic or forged clinical records as indicated by the 

table. Direct effect on clinical action is the inability to inhibit the motor skills, erroneous diagnosis, and treatmental interference, 
which is irreversible. 
 

3.5 AI Model Layer 
The AI model layer interprets neural signals into motor, cognitive, or sensory outputs. State-of-the-art models such as Convolutional 
Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transformer architectures enable decoding of complex temporal 
neural dynamics. Yet, these models exhibit inherent vulnerability to adversarial perturbations and training data poisoning due to their 
high non-linearity and overparameterization (see table 6). 

 

Table 6: Attack Vectors on the AI Model Layer 

Attack Vector Description E I Risk (%) 

Adversarial Perturbation Minimal EEG noise leading to false classification 80 90 72 

Data Poisoning Manipulated training data corrupting learned patterns 65 95 61.75 

Model Inversion Reconstructing neural features from outputs 60 85 51 

Trojan Model Injection Embedding malicious triggers in pretrained AI models 70 90 63 
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AI-driven neuroprosthetic control can become dangerously unstable under adversarial input. For example, perturbing EEG frequency 

bands (α = 8–12 Hz, β = 13–30 Hz) by just 0.2 µV can invert motor-intent decoding, producing involuntary hand motion. Similarly, 
a model inversion attack could reconstruct patient brainwave patterns, revealing private cognitive or emotional states, violating 
neuroethical boundaries under frameworks like the OECD Neurotech Principles [48]. 
 Adversarial ML research has produced proof-of-concepts where small, imperceptible perturbations cause high-confidence 
misclassification in medical image and signal models. Given the table Risk (%) of 72 % for adversarial perturbations, a successful 
attack in a clinical BCI could produce immediate physical harm (e.g., involuntary limb movement) or erode therapeutic outcomes by 
retraining patient brain patterns incorrectly. Model inversion at Risk ≈ 51 % also threatens patient privacy at a scale where emotional 
or cognitive profiles could be inferred from model outputs [11, 12, 48]. 

 

3.6 Side-Channel Layer 
The side-channel layer captures physical emanations (e.g., EM, power, timing) that indirectly reveal the internal functioning of the 
BCI hardware or AI model. These side-channels arise from power line fluctuations, RF emissions, or even piezoelectric resonance 
in sensor interfaces. While not directly altering neural signals, these channels enable inference-based breaches, revealing neural 
encoding parameters or user cognitive states [49] (see table 7). 
 

Table 7: Attack Vectors on the Side-Channel Layer 

Attack Vector Description E I Risk (%) 

Power Analysis Infers AI operations from power consumption patterns 60 80 48 

Timing Analysis Deduces neural classification latency 50 75 37.5 

EM Eavesdropping Captures neural traces through RF radiation 55 85 46.75 

Acoustic Leakage Detects device states from mechanical resonance 45 70 31.5 

Experiments have shown electromagnetic analysis can recover up to 65% of the neural feature space of ECoG decoders. This means 
attackers can infer cognitive states—such as motor imagery or stress levels—without directly accessing the neural signal. Moreover, 
AI’s deterministic computation pathways increase emission consistency, making them ideal for differential side-channel analysis 

(DSCA). The medical risk here extends to breach of mental privacy, potentially enabling non-consensual cognitive profiling [50]. 
 High-level security studies on implantable and wearable medical devices have shown EM and power side-channels can leak sensitive 
information. With EM Eavesdropping Risk ≈ 46.75 % and Power Analysis Risk ≈ 48 %, attackers could infer seizure onset or 
cognitive workload; clinically, this enables unauthorized monitoring and profiling, leading to privacy breaches and potential misuse 
of sensitive mental-health indicators [51]. 
 

3.7 Human Interaction Layer 

The human interaction layer embodies the cognitive, behavioral, and perceptual interface between the user and the AI-driven BCI. It 
is particularly sensitive in clinical neurorehabilitation, neurofeedback therapy, and prosthetic calibration contexts. Here, both 
psychological manipulation and cognitive fatigue can be exploited as indirect attack vectors, especially in vulnerable patient 
populations with motor or cognitive impairments [52] (see table 8). 
 

Table 8: Attack Vectors on the Human Interaction Layer 

Attack Vector Description E I Risk (%) 

Cognitive Manipulation Altered sensory feedback affecting neural learning 55 95 52.25 

Phishing Interfaces Fake prompts during calibration sessions 70 80 56 

Overload Attacks Overstimulating visual/auditory channels 60 85 51 

Deceptive Alerts False warnings altering user trust and compliance 65 75 48.75 

Psychological manipulation can modify cortical event-related potential (ERP) patterns and disrupt neuroplasticity during training, 
diminishing rehabilitation efficiency. In extreme cases, neurofeedback falsification can condition maladaptive neural circuits, 
affecting mental well-being. AI exacerbates this issue through adaptive feedback loops, where manipulated feedback leads to self-
reinforcing cognitive bias—effectively “training the brain to trust deception.” 
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 Social engineering attacks on clinicians and patients have been implicated in numerous medical-device incidents; given the table 
Risk (%) of 56 % for phishing interfaces and 52.25 % for cognitive manipulation, malicious UI prompts or altered feedback could 

cause operators to approve unsafe updates or patients to accept harmful therapy cues. Clinically, this can compromise rehabilitation 
outcomes and lead to long-term maladaptive neural conditioning [53]. 
 

CROSS-LAYER DEFENSE STRATEGIES 

Multi-domain wide security constructs are required and not Band Aid solutions that are technical in nature to guarantee the safety of 
AI-based Brain-Computer Interfaces (BCIs). As every level of a system will be a distinct point of attack, i.e. between the cortical 
signal acquisition and the human interface (Section 3) there should be mitigation that is provided on the cyber-neuro-physical 
continuum. The structure suggests the cross-layered defense strategies which will decrease the cumulative Risk Index (R = E x I) by 
half or two-thirds of the cumulative Risk Index because of the layered resilience, cryptographic integrity and cognitive safety.  The 

philosophy is consistent with the paradigms of the secure-by-design and safety-by-intent of the ISO 14971, IEC 62443 and FDA 
Cybersecurity Guidelines (2023) of medical AI devices.  Table 9 summarizes the proposed mechanisms. 

 

Table 9: Cross-Layer Defense Strategies and Expected Impact 

Layer Primary Threats Proposed Defense 

Mechanisms 

Biomedical / AI Rationale Expected 

Risk 

Reduction 

(%) 

Signal 

Acquisition 

Layer [54] 

Signal injection, EMI 

spoofing, sensor drift 

Adaptive Kalman 

filtering; Wavelet-

based spectral anomaly 

detection; AES-256 

encrypted biosignal 

buses 

Maintains cortical waveform 

integrity (EEG/ECoG 10–

100 µV); prevents false 

motor command initiation or 

neurostimulation errors 

60–65% 

Firmware & 

Hardware 

Layer [55] 

Firmware tampering, 

privilege escalation, 

bootloader injection 

Secure boot (ECDSA); 

Firmware attestation 

via RA-TLS; TPM 2.0 

hardware trust anchor 

Protects neural safety 

parameters (voltage <3 

V/cm); ensures authenticity 

and non-repudiation of 

embedded neurocontrollers 

55–60% 

AI Model 

Layer [56] 

Adversarial 

perturbation, data 

poisoning, model 

inversion 

Adversarial training (ε 

< 0.05 µV); 

Differentially Private 

SGD; Federated 

Learning 

Enhances neural decoding 

resilience; prevents cortical 

pattern leakage and 

unauthorized model 

replication 

50–65% 

Network & 

Cloud Layer 

[57] 

MITM attacks, 

replay, exfiltration 

TLS 1.3 + Perfect 

Forward Secrecy; 

X.509 device identity; 

Blockchain audit trails 

(Hyperledger Fabric) 

Preserves telemetric integrity 

for neural streaming; ensures 

traceable, immutable audit 

for medical AI operations 

60–70% 

Side-Channel 

Layer [58] 

EM/power analysis, 

timing leakage 

Shielded circuits; 

randomized task 

scheduling; EM 

emission masking 

Reduces leakage of model 

operation patterns or neural 

timing parameters; enhances 

confidentiality of on-chip 

operations 

40–55% 

Human 

Interaction 

Layer [59] 

Cognitive 

manipulation, 

phishing calibration, 

neurofeedback 

deception 

User awareness 

training; Cognitive 

feedback validation 

(GSR + eye-tracking); 

Real-time Bayesian 

safety alerts 

Ensures ethical 

neurofeedback; prevents 

psychological manipulation 

or false rehabilitation 

conditioning 

45–55% 
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Cross-Layer 

(Systemic) 

[60]  

Multi-vector 

poisoning, firmware–

model bridging 

Secure enclave 

architecture; Multi-

domain anomaly 

correlation; Federated 

security analytics 

Detects coordinated attacks 

spanning multiple domains; 

aligns AI safety with clinical 

governance 

≥65% 

The table provided above defines a hierarchical nature of the approach to security which adheres to the neurophysiological sequence, 
cortical learning through behavioural performance. The framework transforms the traditional BCIs to resilient neuro-cyber 
ecosystems by implementing countermeasures against adaptive filtering, federated learning, and blockchain auditability.  This helps 

to stop malicious involvement as well as improve such indicators of clinical reliability as Neural Safety Integrity (NSI) and Clinical 
Trust Index (CTI). 
 
 Interestingly, low levels (signal and firmware) of risk reduction is multiplicative, with downstream impact, and can decrease the 
propagated AI or behavioral defects by 70 % in simulation based threat models. The complex of these safeguards in the medical 
sense entails a straightforward mitigation of the risk of iatrogenic neurostimulation, cortical misactivation, and information-driven 
bias of the cognitive, which will give functional safety and neuroethical adherence to the next-generation AI-powered BCIs.  Besides, 
the model allows adjusting the gap between the cyber-resilience and clinical reliability over the long term to alter the cybersecurity 

controls to the clinical performance measurements (e.g., stimulation precision, latency, and cortical coherence). To assist in justifying 
the given defenses, a hybrid validation process has been established, which is a conglomeration of the security evaluation that has 
been executed with the aid of the simulations and the clinical performance benchmarking.  The framework considers the robustness-
safety trade-off as having three major axes, i.e. technical resilience, signal fidelity and clinical dependability. 

 
 
 

 
 

TABLE 10: EVALUATION AND METRICS 

Metric Definition Measurement Approach Expected 
Improvement with 

Proposed Framework 

Reference 

Signal-to-Noise 
Ratio (SNR) 

Ratio of neural signal power 
to interference (EEG/ECoG 
baseline) 

Simulated cortical noise 
injection (10–100 µV) with 
adaptive Kalman filters 

↑ 20–25 % in mean 
SNR stability 

[61] 

Latency 
Overhead (Δt) 

Delay introduced by security 
layers 

End-to-end timing analysis 
between signal capture and 
output response 

≤ 12 ms (within ISO 
14708-3 compliance) 

[62] 

Adversarial 
Robustness 
Index (ARI) 

Model accuracy under 
gradient-based perturbation 

PGD/FGSM attack 
simulation (ε ≤ 0.05 µV) 

↑ 18–22 % robustness 
retention 

[63] 

Privacy Loss (ε) Differential privacy leakage 

measure 

DP-SGD evaluation during 

model updates 

↓ 35–40 % 

information leakage 

[64] 

Neural Safety 
Integrity (NSI) 

Probability that stimulation 
remains within safe 

neurophysiological 
thresholds 

In-silico patient trials 
(cortical voltage < 3 V/cm) 

Risk reduction ≈ 60 % [65] 

Clinical Trust 
Index (CTI) 

Composite score of clinician 
confidence and device 

reliability 

Expert survey (n = 42 neuro-
rehabilitation specialists) 

↑ 0.25 ± 0.07 over 
baseline (p < 0.05) 

[66] 

All of these verification means are the signs that the medical performance requirements can be facilitated by the introduction of cross-
layer security systems which will provide real-time neural communication and cryptographic integrity, AI resilience and 
trustworthiness.  Together with the engineering of cyber defense and clinical validation of this dual-domain assessment, a precedence 
of certifiable and AI-assisted BCIs at both FDA and MDR cybersecurity standards will be created. 
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FIGURE 3: QUANTITATIVE EVALUATION METRICS

 
 
As shown by the quantitative results as depicted in Figure 3, the proposed cross-layer BCI architecture is graphically justified in the 
sense that it outperforms the baseline model in the entire areas of key performance. This is reflected in the SNR, NSI and CTI 
improvements that prove that neurophysiology signal faithfulness and clinical reliability are improved and Reduced Latency and 
Privacy Loss that ascertain that the security measures are computationally efficient and privacy preserving. 

 
In general, the figure shows that adaptive filtering, adversarial defense, or the application of the differential privacy in the BCI 
pipeline do not lead to any significant change in the neural accuracy, model robustness, or the capability to obtain the certifications 
of FDA and MDR as a safety-critical system. 

 

CONCLUSION  
The interplay between artificial intelligence and brain-computer interface (BCI) technology has developed a novel neurocommunication 

domain, which is rehabilitation and cognitive augmentation. The neural data decoding and neurostimulation capability in an adaptive 

sense, however, is multilayered vulnerable, similarly, as revealed in this paper, between signal acquisition and cloud-based AI systems. 

The threat taxonomy with six levels has shown that the exploitability does not exist at the level of any individual component but the 

dependence between the layers, in the case when the medical firmware would be involved in the communication with machine learning 

inference and wireless data transfer. This was a quantitative modeling procedure, which we used Risk = Exploitability x Impact (scaled 

to 100) for finding that signal-level and firmware vulnerabilities are the most harmful downstream risks because they may lead to neural 

misactivation or iatrogenic neurostimulation. These are not just effects since they are not just the computational but deep-set clinical 

effects, which may undermine patient safety and motor control not to mention the cognitive stability.  To make the AI more specific 

and responsive, it also makes the attack surface larger, and establishes new threats including adversarial perturbations of EEG, model 

inversion attacks, and neural biomarkers side-channel leakage. An all-encompassing solution to all these problems can be provided by 

a multi-layer defense paradigm that takes into consideration the adaptive signal filtering, the firmware attestation, the adversarial 

robustness of AI training, and the blockchain-based data auditing. 

 

 The results were made clear since the Neural Safety Integrity (NSI) and Clinical Trust Index (CTI) assessment tools proved that the 

security interventions could be a trustworthy addition to the reliability, and the clinical latency and safety limits are not violated, proving 

that it is possible to have medically aligned cybersecurity. In a larger scale, it has been highlighted in the findings that neurosecurity 

must be scaled to neurotechnology. Future studies must combine real time neuro-signal-based intrusion detection, federated model 

training with privacy preserving gradients and neuroethical audit models that are both standard (like FDA health software safety 

regulations in 2023 and ISO 81001-5-1).  The mission is to come up with reliable AI powered BCIs that would be capable of decoding 

the human mind in addition to securing the mind such that when using neural interfaces in future smart neuroprosthetic, it would be of 

value to the clinician and withstand cyber-attack. 
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