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ABSTRACT

The security and privacy concerns of the Artificial Intelligence (Al) and Brain-Computer Interface (BCI) technology working together
in the field of modern medicine are complicated. It has not only caused a revolution in neurocommunication, cognitive rehabilitation
as well as assistive neuroprosthetics, it has also created complex security and privacy challenges. The analogy framework that has
been used in analysing the security irregularities of the BCI systems implemented based on Al involves 6 layers that include the signal
acquisition, device firmware, network communication, Al models, side channels, and human interaction. Some of the potential targets
of adversarial perturbation include an adversarial perturbation, data poisoning, model inversion, signal injection and manipulation of
firmware-threats, with direct implication on the system integrity and patient safety. The framework enhances data confidentiality,
operational reliability, and clinical trust through end-to-end threat modeling and simulation. To counter medical-cyber threats, it
employs a cross-layer defense integrating federated learning, differential privacy, secure firmware attestation, and adaptive noise
filtering. This unified taxonomy supports secure-by-design Al-BCI systems, ensuring safety, dependability, and ethical integrity in
medical applications.
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INTRODUCTION

One of the most rapidly evolving fields in neuroengineering is the Brain-Computer Interfaces (BCIs) which entails an integration of
the previously noted fields computational neuroscience, biomedical signal processing, and artificial intelligence (Al) into a bidirectional
interface between the central nervous system and external products. BCls also bypass the normal neuromuscular but decode neural
activity to brain signals into executable commands through the measurement of neural activity, either cortical, subcortical or peripheral
[1]. This kind of technology may potentially be revolutionary in medicine, particularly, the restoration of sensory or motor functions
in stroke victims, individuals with spinal cord injuries, amyotrophic lateral sclerosis (ALS), or hemiplegic patients. Through
electroencephalography (EEG), electrocorticography (ECoG) and intracortical microelectrode arrays, clinicians and researchers are
able to decode neuronal firing patterns, local field potentials and oscillatory dynamics in order to control prosthetics, exoskeletons or
even digital communication interfaces [2].

Al and, in particular, the deep neural networks, reinforcement learning algorithms, and adaptive signal filtering has changed the
performance of the BCls, and has improved the signal-to-noise ratio, the accuracy of the decoding, and dynamical personalisation of
the neural decoding model [3, 4]. The advances have led to the closed-loop neuromodulation, cognitive neurorehabilitation, and the
neural feedback, which continuously learns through the patient-specific neuroplastic changes. Pattern recognition models built with Al
can be applied to autonomously adjust both cortical stimulation levels in motor cortex areas, or discover patterns in motor cortex areas
in the aftermath of a stroke, respectively, when using the approach of deep brain stimulation (DBS) therapy against Parkinson disease
or neural decoding, respectively [5].
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In the biomedical field, Al-assisted BCls are at the brink of personal medicine and despite the neural replacement. As demonstrated,
Al-assisted neuroprosthetics can be applied to clinical trials that would help to restore voluntary movements of the limbs in over 70 %
of patients with the spinal cord injuries [6]. Similarly, EEG classifiers based on Al have achieved a 95% accuracy in detecting epileptic
seizures to facilitate prompt interventions during emergency treatment [7, 8]. Advanced neurostimulation (such as reinforcement
learning) systems are also being trialled in adaptive deep brain stimulation (DBS) in Parkinson, and have now demonstrated significant
improvement in patient outcomes [6]. Nonetheless, the attack surface increases with the extent of Al integration. BCIs are concerned
with biomedical information most sensitive of all, in terms of thoughts, emotions, and cognitive intentions, which take the form of
neural patterns. Tampering with or illegal hacking of such information does not only endanger patient confidentiality, but also may
result in unwanted neural activation, artificial stimulation or inappropriate therapeutic feedback benefits [9, 10 ]. Thus, BCI systems
protection is not just a cybersecurity issue, but also a matter of clinical safety, medical ethics and patient autonomy.

The neurotechnological systems in respect of BCI security are the security of neural signals, model parameters, integrity of firmware,
and security of communication channels, with regard to unauthorized access, tampering and exploitation [11, 12]. An as safe BCI must
be not only capable of providing the confidentiality, integrity, and availability (CIA) of its neural data pipeline, but also capable of
ensuring that patient safety and medical performance are not compromised [13].

Common Al-based BCls contain six networking layers:

e  Signal acquisition, where the neural signals are acquired over sensors;

e Low-level control Data Firmware Low-level control data, which controls the low-level operations;
e  Network communication, forwarding the information to new devices or cloud services;

e Neural decoding is the Al model processing that occurs;

e  Side-channel emissions, e.g. power, timing or electromagnetic leakage and

e Human application , adjustment and intellectual communication.

Each of the layers has its own vulnerabilities. Considering the example, an attacker can also offer distorted EEG data when obtaining
a signal to deceive the medical devices [14]. There is a possibility that the stimulation parameters of implanted neurostimulators can
be remotely altered by using firmware vulnerabilities. Adversarial samples or model inversion assault can compromise outputs or
rebuild privacy neural attributes in Al model layers [15]. The above-presented situations demonstrate that the outcome of any
manipulations, even the minor ones, in a clinical setting can be catastrophic, such as incorrect diagnosis or the inability to control the
prosthetics.

The current trend is being accelerated to a large extent by the introduction of artificial intelligence into Brain-Computer Interfaces
(BCls). Nonetheless, the same development comes at a definite technology-vulnerability trade-off: the more flexible, connected, and
smart systems become, the more vulnerable they are to the threat of new cyber-neuro attacks. The use of cloud-based machine learning,
wireless data transmission and automated updates of the firmware are common features of modern BClIs and contribute to better
usability and scalability, although inevitably, increase the attack surface [16]. This trend is indicative of a larger trend in medical device
cybersecurity, where technological innovations have been rapidly outpacing the creation of the respective security laws which can be
shown here:

e |tis estimated that the BCI market will hit USD 9.7 billion by 2032 and compound annual growth rate (CAGR) of over 14
due to Al-enhanced medical uses in the global BCI market, which is estimated to be USD 3.2 billion in 2024 [17].
Nevertheless, this has come along with an orgy of ugly acts of corruption of the system. For example:

e In 2020, the scholars of the University of Washington conducted a spoofing attack of neural signals to cross-check EEG-
based authentication systems, and they could penetrate the system, masquerading as a non-user [18].

e In 2021, arbitrary injections of adversarial perturbation on the BCI data streams minimized the classification accuracy, and
obliterated the prosthetic control models by up to 35 % [19].

e The testing of the implantable neurostimulators ( Medtronic Activa platform ), has shown areas of vulnerability of possible
remote re-programming its parameters as a possible dire clinical safety risk [20].
Also, model inversion attacks have been reproduced by researchers and can form mental images of trained neural decoders revealing
previously unrecognised threats to cognitive privacy [21].
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This type of vulnerability does not only cause problems to the malfunctioning of devices but it poses a direct threat to the psychological
autonomy and neurological security. It is possible that the adversaries will interfere with the Al models or change the feedback loops
of stimulation, leading to patients developing an uncontrollable movement of the muscles, emotional regulation, or cognitive
distraction. As such, current medical fraternity is in dire need of a new demand, that is, a compromise between the technological
superiority and the robust neurosecurity policies that would guarantee credibility, robustness, and moral rectitude. Despite the fact that
the phenomenon of cybersecurity of the medical devices is attracting an increasingly growing number of people, Al-based BCls are
not safe, and, what is more, they are not regulated. The existing systems tend to treat those systems as ordinary Internet of Things (1oT)
devices, and do not mention that they have their own form of neural data, real-time clinical demands and ethical concerns. Such gaps
are mentioned in this paper by discussing Al-enabled BCls in relation to layers of security. Specifically, we:

e Name and categorize vulnerabilities to six AI-BCI layers of operation of the system;

e Assess threat model of simulation-based adversarial attacks on accuracy of decoding, patient safety, and data confidentiality
and

e In our Cross-Defence Strategies cross-layer safeguards are advised , e.g. differentiated privateness, fed learning, safe
attesting firmware, and adaptive noise suppression.

BACKGROUND AND RELATED WORK

The convergence of neuroscience, biomedical engineering, and artificial intelligence (Al) has given rise to highly sophisticated
Brain—Computer Interface (BCI) systems that decode neural activity into actionable digital commands. Understanding the
architecture, medical applications, and security literature of Al-powered BCIs is essential to identify where vulnerabilities arise. This
section provides a foundational overview of the BCI system architecture, the integration of Al in neurotechnology, and an analysis
of prior studies that inform current research gaps. Each subsection builds upon the layered security model that underpins the
subsequent threat assessment and defense taxonomy presented later in the paper.

2.1 Brain—Computer Interface Architecture

A Brain—Computer Interface (BCI) establishes a direct neurocomputational bridge between the human nervous system and external
digital devices, enabling neural activity to be interpreted, processed, and converted into actionable out- puts. Functionally, it can be
conceptualized as a layered transformation pipeline, where biological signals undergo a series of computational refinements—each
stage introducing a new abstraction of the brain’s electrical language [22]. Figure 1 shows the basic implementation of Artificial
Intelligece BCI Architecture where data from Signal layer goes to Human application layer

Figure 1: Schematic representation of the AI-BCI architecture

Processing and
Normatization Layer

> TFar(Z'(IN(S(2)))) + «

At the foundation lies the Signal Acquisition Layer, where neural poten- tials are recorded using modalities such as
Electroencephalography (EEG), Elec- trocorticography (ECoG), or intracortical microelectrode arrays (MEAS). The recorded
waveform is represented as [23]:

SO =) ViE)+ 1

where Vi(t) denotes the voltage potential recorded at electrode i, and 1(t) represents biological and environmental noise. This signal
encodes subtle electrophysiological signatures—such as sensorimotor rhythms, event-related po- tentials (ERPs), and oscillatory
dynamics—that convey the subject’s intent or cognitive state. The “magic” at this layer is the conversion of neural firing patterns
into measurable analog voltages, effectively digitizing thought at its source.

The Preprocessing and Normalization Layer [24], denoted N (-), cleans and stabilizes these raw voltages for further analysis.
Operations such as artifact re- jection, band-pass filtering, and Common Average Referencing (CAR) remove ocular, muscular, and
environmental distortions. Mathematically, this transfor- mation can be expressed as:

S(t) —uS
sn(®) = N(s() = 221
where uS and oS denote the mean and standard deviation of the recorded signal. After this step, the continuous analog data becomes
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a structured neural feature tensor, retaining only neurophysiologically relevant activity (e.g., power spectra, phase—amplitude
coupling). This layer’s transformation extracts the brain’s “signal of intent” from the background of biological chaos.

The Transmission and Firmware Encoding Layer, T (-), converts these preprocessed neural features into digital packets suitable for
machine interpre- tation [25]. Firmware modules perform Analog-to-Digital Conversion (ADC), times- tamp alignment, data

compression, and error correction, ensuring temporal co- herence across multiple channels:

E(t)=T (SN (t)) = Q - ADC(SN (t)) + 8T
where Q denotes the quantization factor and 8T represents transmission latency. Here, analog voltages are transformed into discrete
binary vectors en- capsulated in data frames ready for wireless communication (e.g., Bluetooth or Zigbee). Conceptually, the neural
signal becomes an information-carrying bitstream—a computational proxy of cognition.
At the core of the architecture lies the Al Decoding Layer, fAl (-) [26], which transforms these encoded data streams into meaningful
predictions. Deep learn- ing architectures such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and
Transformers are used to decode temporal-spatial neural patterns into symbolic or motor outputs:

Y = fAI (E(t)) = arg max P (y|E(t), 0),
where Y represents the set of possible output classes (e.g., left/right move- ment, cognitive state), and 0 are trainable parameters. At
this stage, the rep- resentation transitions from a signal space to an intention space—where neural information becomes actionable
command probability.

The Human Interaction and Feedback Layer closes the loop by con- verting decoded outputs into sensory or motor feedback: F (t) =
g(Y) + &), where g(-) denotes the actuator or feedback mapping function, and &(t) models biological adaptation noise. For
instance, in neuroprosthetic systems, Y may drive limb actuators, while in neurorehabilitation, it may modulate visual or auditory
feedback [27]. Over time, this feedback reinforces synaptic plasticity through Hebbian adaptation(Aw = nxy) allowing the patient’s
brain to refine its firing patterns for more accurate control—a phenomenon known as learning through the loop. Collectively, the full
BCI data flow can be summarized as:

Y = fAI (T (N (S(t)))) + ¢,
where € captures cumulative physiological and computational noise. In essence, the BCI pipeline follows a progressive and
biologically meaningful transformation:

S(t) = Preprocessed Signal — Encoded Data(Al) - Y
each stage representing a new layer of neurosemantic interpretation—from cortical voltage to digital feature, from digital feature to
algorithmic meaning, and from meaning to clinical action. Every layer, therefore, performs its own form of “medical magic”: captur-
ing, cleaning, encoding, decoding, and reintegrating cognition within a closed adaptive loop. In the upcoming sections, we will
examine each layer’s opera- tional mechanics and potential vulnerabilities in greater detail, demonstrating how precision
neuroengineering safeguards the integrity of this cognitive—digital bridge

2.2 Al in Neurotechnology: Medical Applications and Risks

Artificial Intelligence (Al) that enhancing the Brain-Computer Interface (BCI) systems with the new degree of accuracy, versatility,
and personalization. The Al-powered BCls are redefining the prospects of modern medicine, be it the ability to decode neural activity,
or the restoration of the lost motor or cognitive capabilities. The related technological breakthrough, however, is accompanied with
greater complexity and exposure. Even deep learning applied with reinforcement learning and neural decoding models has not only
enhanced clinical outcomes but also introduced a new level of cyber-neuro risk. Spiritually speaking in the description of this two-
facet landscape of innovation and exposure, Table 1 is a summary of some of the key medical applications of Al-enabled BCls, the
algorithms on which they operate, the clinical advantage they have, and the security or privacy risks they pose. This overview
constitutes a cursory foundation on why medical neurotechnology is both emerging and expanding its digital attack interface

TABLE 1: Al APPLICATIONS AND ASSOCIATED SECURITY RISKS IN MEDICAL BCIS

Medical Application Al Technique Clinical Utility Likely Potential Example
Used Attack Security / Study
Vector Privacy Risk
Motor Prosthesis CNNs, RNNs Enables Adversarial Altered intent [28], [29]
Control (ALS, Spinal for EEG/ECoG voluntary  limb signal recognition
Injury) decoding movement  and injection may trigger
robotic assistance during neural unintended
decoding limb movement
or device
paralysis
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Neurorehabilitation Reinforcement Adaptive Data Corrupted [30]
Post-Stroke learning and feedback-based poisoning in reward
transfer learning therapy training feedback can
enhancing motor feedback loop degrade
recovery rehabilitation
outcomes
Neurostimulation for Deep Dynamically Firmware Over- or under- [31]
Epilepsy & reinforcement adjusts manipulation stimulation
Parkinson’s learning (DRL) stimulation  to or replay | causing
for closed-loop reduce tremors or attack physiological
stimulation seizures harm
Cognitive & Transformer- Supports Model Unauthorized [32]
Emotional State based EEG affective inversion or extraction  of
Monitoring emotion computing  and side-channel emotional  or
recognition mental health inference cognitive states
tracking
Speech Variational Restores  verbal Model Leakage of [33]
Reconstruction from Autoencoders communication inversion and private neural
Brain Signals (VAE) and in locked-in gradient data or speech
Seq2Seq models patients leakage content

As the evidence indicated in Table 1 demonstrates, the trade-off in this context under the implementation of Al in the neurotechnology
concept is quite obvious: the same architectures that make the system more precise and more personal make them more susceptible
to cyber-neuro attacks. To use convolutional and recurrent models as an example, they may be implemented successfully to decode
intent to control a prosthetic since they are susceptible to adversarial signal injections, they may produce unsafe or unintended
behaviour of the device. Similarly we can poison reinforcement learning models that are utilized to enhance the adaptive
neurorehabilitation and poison feedback loops. Transformer-based emotion recognition though helpful in the domain of affective
monitoring offers risks of model inversion that promotes the potential reconstruction of sensitive cognitive information.

Thus, the future of the Al-driven BCls lies in the performance safety-meets-level protection, in other words, implementing adversarial
robustness, encryption, and interpretability into neural networks. The defenses will be required on the algorithmic and firmware level
to be reinforced such that the new generation of intelligent neurotechnologies might not only be innovative but also secure, ethical
and clinically trustworthy.

2.3 Prior Studies on BCI Security and Privacy

The examination on the security and confidentiality of Brain-Computer Interfaces (BClIs) is undergoing transformation as the neural
engineering and artificial intelligence advancement soar. Those dealing with hardware stability and wireless networking integrity
first were examined and included aspects such as signal jamming, bottom-level information leakage and unreliable updates to
firmware [22]. With the continued release of Al algorithms into neural decoding and neural classification applications, more recent
work has made studies of weaknesses in algorithms, the most famous being adversarial perturbation, data pollution and privacy
breach through model inversion. Meanwhile, neuroethical research has raised the social effects of using neural data without consent,
cognitive manipulation and consent in clinical and research studies. The example literature in these areas is summarized in Table 2
which reveals that the research area has been expanding in scope both to the lower-level device protection and the high-level Al and
privacy concern.

TABLE 2: OVERVIEW OF PRIOR RESEARCH ON BCI SECURITY AND PRIVACY

Study / Primary Focus Methodology Key Observations Identified Limitations
Year
Bonaci et | Wireless implant Policy + technical Described  “brain- Conceptual/early — —
al., 2014 communication; analysis /  threat apps” threats and limited  experimental
[34] BCI app modelling showed how BCI cross-layer testing

ecosystems platforms could leak
private info (brain-

spyware scenario)
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Meng et al., EEG privacy / Empirical Showed that user Focused on EEG
2023 [35] user identity | experiments on identity can  be datasets; practical
leakage multiple EEG learned from EEG deployment/consent
datasets; defenses to and proposed aspects not exhaustively
remove identity identity-unlearnable tested
information preprocessing
Yu et al, Adversarial Generated EEG Small imperceptible Attack evaluated in
2023 [36] robustness in adversarial perturbations can offline/bench  settings;
EEG perturbations (BEAM cause large (often acquisition-layer
classification perturbations)  and >30%) accuracy attacks not covered
attacked DNN drops in
classifiers epilepsy/diagnostic
models
Pugh et al., Firmware / Conceptual + ethical Described Ethics/review paper —
2018 [37] implant clinical analysis, review of “brainjacking” risks did not present new
safety implant programmer and surveyed firmware reverse
(brainjacking) vulnerabilities evidence that engineering data
programming
consoles and update
paths could be abused
Shen et al., Model inversion / DNN-based Demonstrated Work uses fMRI (not
2019 [38] mental-image reconstruction  from reconstruction of EEG); controlled lab
reconstruction fMRI (deep image seen and imagined settings with large data
reconstruction) images from brain
activity (proof that
internal
representations  can
be decoded)
Nishimoto Visual Encoding/decoding Reconstructed visual fMRI-based, requires
et al.,, 2011 experience models from fMRI movies from brain large stimulus sets and
[39] reconstruction responses to natural activity — early strong priors
(movie stimuli) movies landmark  showing
feasibility of
reconstructive attacks
Magee / Ethical, legal, Literature/policy Identified regulatory Review-based; not
Livanis and policy gaps review and gaps and called for | technical validation
(reviews), in BCls discussion stronger governance
2023-2024 of neural data
[40]
Federated / Federated FL experiments on Showed  federated Many works did not
privacy- learning for EEG EEG datasets; approaches can keep fully evaluate
preserving (privacy- evaluated utility and raw EEG local while adversarial/poisoning
EEG works preserving privacy gains maintaining  model threats in FL setting
(sample), models) performance
2021-2024
[41]

As much as these works provide a lot of information, majority of them are domain specific - that is they are either too technical or
too ethical in their styles to give a description of BCI systems. Very few integrate interdependences across hardware, communication
and Al layers. Moreover, the empirical validation in the context of combination attacks, i.e. when the manipulation of the firmware
also leads to the manipulation of the Al-based decoding integrity is less supported. A research gap in the existing study is the absence
of one analytical system to cross-layer threat modeling, which generates an urgent interest.

SECURITY THREAT MODEL AND ATTACK TAXONOMY
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The use of Brain-Computer Interface (BCI) systems in conjunction with biomedical signal acquisition, neural decoding algorithms,
and Al-based decision systems inevitably compromises the security of these systems [40 -42]. Contrary to conventional medical
equipment, BCls work directly on the electrocorticography (ECoG) signal or electroencephalography (EEG) signals, which are
personal-specific to neurophysiology, and a security breach is not only a danger to the privacy of data, but also a potential
neurophysiological risk. The latest clinical and assistive BCls have been inclined to send information via wireless telemetry,
preprocessing neural signals in firmware level, and neural signal interpretation Al-based modules. Each of these architecture levels
is a potential attack target and adversarial manipulation can result in inaccurate motor activity, fraudulent cognitive feedback or even
a malfunction of neurostimulators and which can be physically or psychologically detrimental to patients.

In order to examine these weaknesses in a systematic fashion, this paper proposes a 6 layer BCI threat model comprising (1) Signal
Acquisition, (2) Firmware and Embedded Systems, (3) Data Transmission, (4) AI/ML Model Processing, (5) Cloud and Storage
Infrastructure, and (6) User Interface and Feedback Mechanisms. Risk measurement of the proposed structure (Figure 2) is a measure
of severity of probabilistic risks where.

Risk Score (R) = %

and E (Exploitability) and | (Impact) are rated on a scale between 1-100. This enables calculation of a clinical risk measurement
based on a percentage, which is the probability and the result of adversarial interference. A high-threat zone is a score above 60 %
typically signalling direct neural stimulation or decision loops under Al control, where any minor scale adversarial perturbation (e.g.
input noises or firmware spoofing) can invoke aberrant neuro-response patterns or over stimulate the stimulator.

Figure 2 indicates the proposed Six-Layer Threat Model that links the attack surfaces of the neural sensors with patient feedback

endpoints. The layers highlight their vulnerability vectors, the exploitability gradient, and clinical risk potential which are the
structural foundations of the attack taxonomy that is introduced in Sections 3.2-3.8.

Neural Signal — Filtered Data — Features - Cloud Transmission - Feedback

Neural Sensors Signal Acquistion Communication & Cloud  Human Feedback Interface
) ¥
(¢ ) Mg 7 1
7N SN o 7N
Neural signals Analog voltages Wavefram Encoded data Prediction data Actuation signal
Features Feature Al Output [ Transmitted Adaptive brain feedback
Raw electrical data Clean waedfram vector symbols Predicted intention control signals
Adaptive
Neurofeeback
Loop
Clinical Risk
Potential

T
Explitabiity Gradient =

FIGURE 2: Six-Layer Threat Model

3.2 Signal Acquisition Layer
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Signal acquisition layer is the neural-electronic interface one that records Electrophysiological activity that includes
Electroencephalography (EEG), Electrocorticography (ECoG), Local Field Potentials (LFPs), and Single-Unit Activity (SUA). These
neural biosignals consist of changing the activity of cortex in time and frequency that are further digitalized and processed by Al
algorithms. It is however highly susceptible to electromagnetic interference (EMI), thermal noise and artifactual contamination by
muscular and ocular means. With the unbelievably low measurable value within the range of 10-100 uV scale, even the tiniest forms
of adversarial perturbation can cause the driftage of the signal, misclassification of the intent, or even uncontrolled stimulation of the
motor prostheses. This layer therefore represents the weakest and the bottom layer of all the six layers of the security model of the
six layer BCI, and the integrity of the data of the neural data that is the direct determinant of safety and accuracy in the downstream
(see Table 3).

Attack Vector Description Exploitability Impact Risk
(E/100) (1/100) (%)

Signal Injection Inserting  synthetic  EEG/ECoG 70 90 63
currents through electrodes

Electromagnetic EMI-based waveform distortion 60 85 51

Spoofing

Sensor Drift | Altering amplifier gain or baseline 55 75 41

Manipulation potential

Data Interception Eavesdropping  on unencrypted 80 60 48
biosignal buses

TABLE 3: ATTACK VECTORS ON THE SIGNAL ACQUISITION LAYER

A bioelectric noise adversarial injector can impose a signal-to-noise ratio (SNR) below 10 dB and trigger deep neural decoders, e.g.,
EEGNet or SincNet, to process inability to differentiate between cortical intention. This may result in mis-actuation of the prosthetic
or neurostimulation error, may cause iatrogenic injury or cortical overexcitation, which may be harmful. It is also aggravated by
closed-loop BCls in which time-varying adaptive feedback may spread the perturbation, and the current neurofeedback therapy
sessions are being polluted [43].

The literature has verified that waveforms injected artificially may consistently induce misselection, and are difficult to detect; a
table Risk (%) of 63 %. signal injection and 51 %. These exploits are important to clinics in order to spoof EMI. In the case of a
patient with paralysis (victim of a spinal cord injury), when the prosthetic limb is present, it is possible that, via a successful signal-
injection event (Risk = 63), an undesirable movement will occur in the limb, and this can cause an injury; in epilepsy monitoring,
EM interference (Risk [?] 63). 63) may be experienced. 51) has the ability of giving false positive or false negative results, which
invalidates safety of patients and clinical judgment [44].

3.3 Firmware Layer
It has embedded neurocontroller as the firmware layer controlling analog front-end circuits and digital signal processing (DSP)
modules. The actual real-time functions are controlled by firmware, such as: stimulation pulse width modulation (PWM),
implantation of impedance calibration and neural safety threshold. Hack of the firmware, in its turn, not only endangers the protection
of data but neurophysiological integrity, which may violate 1ISO 14708 and IEC 60601 medical equipment requirements (see table
4).

TABLE 4: ATTACK VECTORS ON THE FIRMWARE LAYER

Attack Vector Description E | Risk (%)
Firmware Overwriting embedded control logic 65 95 61.7
Tampering
Privilege Escalation Exploiting JTAG or UART debug ports 70 90 63
Bootloader Injection Malicious firmware through OTA updates 75 85 63.7
Side-channel Power and timing side-channels revealing code 60 80 48
Leakage

Altered firmware could set stimulation to possibly damaging levels of corticulopathic levels (>3 V/cm) resulting in gliosis, neuronal
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death or neurovascular hemorrhage. In addition to that, reinforcement-learning-based BCls are dependent on the feedback systems
of the firmware which might not adequately indicate the Al model causing the maladaptive synaptic plasticity and the eventual loss
of the use of the patient in the long-term. As regards security engineering, cryptographic boot, secure enclave and hardware attestation
must therefore be incorporated in the firmware to guarantee biomedical safety integrity [45].

Mysterious firmware upgrade routes, and debug ports in the air have been reiterated throughout the time of overhyped publicity
about commercial neuro equipment and implantables. Given that the table Risk (%) is known (100% mapped in the prior scoring in
other cases and these 61.7 -63.7% tampering or bootloader-injection), an actual firmware infestation would merely change the
stimulation parameters [46]. This may lead to seizure or non-recoverable tissue damage (high 1) and as the attacks on firmware
continue to occur and are not cleared by reboot, then the risk is long-term and acute, hence, inspired secure boot and attestation as a
clinical need.

3.4 Network Communication Layer

Communication Layer is a interface between the implant or wearable with remote Al servers and clinical data systems based on one
of the following communication protocols: Bluetooth Low Energy (BLE), Wi-Fi, or 5G medical IoT. It takes care of Telemetry,
Firmware loading and offloading real time neural decoding. This layer is needed to provide confidentiality, availability and integrity
of relayed cortical data. If in this situation, attack is a threat of interfering with the neuroinformatics pipeline, attackers will be able
to make use of it to perform remote session hijacking or alter patient-specific cortical mapping (see table 5).

TABLE 5: ATTACK VECTORS ON THE NETWORK COMMUNICATION LAYER

Attack Vector Description E | Risk (%)
MITM Attack Intercepting neural data between device and cloud 85 85 72.25
Replay Attack Reinjecting recorded control packets 75 80 60
Data Exfiltration Stealing encrypted EEG/ECoG payloads 70 90 63
Protocol Forcing use of weaker encryption 65 75 48.75
Downgrade

Medical consequences of violation can also be disastrous: a replay attack would transmit valid cortical command packets previously
transferred, and they would result in unwanted motion of a paralyzed individual. The recent studies showed that a delay of just a
single second of the packets in the closed-loop deep brain stimulation (DBS) has the potential of disrupting up to 23 % of it hence
breaking the therapeutic rhythm. This makes the Al model cloud-dependent also which forms the latency windows of attack where
the attackers are allowed to spoof the decoded signals and are valid to the neural decoder [47]. It has been shown that consumer-
level EEG headsets and certain clinical telemetry stacks are susceptible to wireless telemetry attacks (e.g. unencrypted BLE streams).
An eavesdropper, a Risk = 72%, that obtains live neural streams, and rewrites them, may steal data in the cognitive-state, and may
inject commands, a Risk ~ 63%, which results in unsafe activation of the prosthetic or forged clinical records as indicated by the
table. Direct effect on clinical action is the inability to inhibit the motor skills, erroneous diagnosis, and treatmental interference,
which is irreversible.

3.5 Al Model Layer

The Al model layer interprets neural signals into motor, cognitive, or sensory outputs. State-of-the-art models such as Convolutional
Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transformer architectures enable decoding of complex temporal
neural dynamics. Yet, these models exhibit inherent vulnerability to adversarial perturbations and training data poisoning due to their
high non-linearity and overparameterization (see table 6).

Table 6: Attack Vectors on the Al Model Layer

Attack Vector Description E I Risk (%)
Adversarial Perturbation Minimal EEG noise leading to false classification 80 90 72
Data Poisoning Manipulated training data corrupting learned patterns 65 95 61.75
Model Inversion Reconstructing neural features from outputs 60 85 51
Trojan Model Injection Embedding malicious triggers in pretrained Al models 70 90 63
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Al-driven neuroprosthetic control can become dangerously unstable under adversarial input. For example, perturbing EEG frequency
bands (o= 8-12 Hz, B = 13-30 Hz) by just 0.2 pV can invert motor-intent decoding, producing involuntary hand motion. Similarly,
a model inversion attack could reconstruct patient brainwave patterns, revealing private cognitive or emotional states, violating
neuroethical boundaries under frameworks like the OECD Neurotech Principles [48].
Adversarial ML research has produced proof-of-concepts where small, imperceptible perturbations cause high-confidence
misclassification in medical image and signal models. Given the table Risk (%) of 72 % for adversarial perturbations, a successful
attack in a clinical BCI could produce immediate physical harm (e.g., involuntary limb movement) or erode therapeutic outcomes by
retraining patient brain patterns incorrectly. Model inversion at Risk = 51 % also threatens patient privacy at a scale where emotional
or cognitive profiles could be inferred from model outputs [11, 12, 48].

3.6 Side-Channel Layer

The side-channel layer captures physical emanations (e.g., EM, power, timing) that indirectly reveal the internal functioning of the
BCI hardware or Al model. These side-channels arise from power line fluctuations, RF emissions, or even piezoelectric resonance
in sensor interfaces. While not directly altering neural signals, these channels enable inference-based breaches, revealing neural
encoding parameters or user cognitive states [49] (see table 7).

Table 7: Attack Vectors on the Side-Channel Layer

Attack Vector Description E | Risk (%)
Power Analysis Infers Al operations from power consumption patterns 60 80 48
Timing Analysis Deduces neural classification latency 50 75 375
EM Eavesdropping Captures neural traces through RF radiation 55 85 46.75
Acoustic Leakage Detects device states from mechanical resonance 45 70 315

Experiments have shown electromagnetic analysis can recover up to 65% of the neural feature space of ECoG decoders. This means
attackers can infer cognitive states—such as motor imagery or stress levels—without directly accessing the neural signal. Moreover,
AT’s deterministic computation pathways increase emission consistency, making them ideal for differential side-channel analysis
(DSCA). The medical risk here extends to breach of mental privacy, potentially enabling non-consensual cognitive profiling [50].
High-level security studies on implantable and wearable medical devices have shown EM and power side-channels can leak sensitive
information. With EM Eavesdropping Risk = 46.75 % and Power Analysis Risk = 48 %, attackers could infer seizure onset or
cognitive workload; clinically, this enables unauthorized monitoring and profiling, leading to privacy breaches and potential misuse
of sensitive mental-health indicators [51].

3.7 Human Interaction Layer

The human interaction layer embodies the cognitive, behavioral, and perceptual interface between the user and the Al-driven BCI. It
is particularly sensitive in clinical neurorehabilitation, neurofeedback therapy, and prosthetic calibration contexts. Here, both
psychological manipulation and cognitive fatigue can be exploited as indirect attack vectors, especially in vulnerable patient
populations with motor or cognitive impairments [52] (see table 8).

Table 8: Attack Vectors on the Human Interaction Layer

Attack Vector Description E | Risk (%)
Cognitive Manipulation Altered sensory feedback affecting neural learning 55 95 52.25
Phishing Interfaces Fake prompts during calibration sessions 70 80 56
Overload Attacks Overstimulating visual/auditory channels 60 85 51
Deceptive Alerts False warnings altering user trust and compliance 65 75 48.75

Psychological manipulation can modify cortical event-related potential (ERP) patterns and disrupt neuroplasticity during training,
diminishing rehabilitation efficiency. In extreme cases, neurofeedback falsification can condition maladaptive neural circuits,
affecting mental well-being. Al exacerbates this issue through adaptive feedback loops, where manipulated feedback leads to self-
reinforcing cognitive bias—effectively “training the brain to trust deception.”
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Social engineering attacks on clinicians and patients have been implicated in numerous medical-device incidents; given the table
Risk (%) of 56 % for phishing interfaces and 52.25 % for cognitive manipulation, malicious Ul prompts or altered feedback could
cause operators to approve unsafe updates or patients to accept harmful therapy cues. Clinically, this can compromise rehabilitation
outcomes and lead to long-term maladaptive neural conditioning [53].

CROSS-LAYER DEFENSE STRATEGIES
Multi-domain wide security constructs are required and not Band Aid solutions that are technical in nature to guarantee the safety of
Al-based Brain-Computer Interfaces (BCls). As every level of a system will be a distinct point of attack, i.e. between the cortical
signal acquisition and the human interface (Section 3) there should be mitigation that is provided on the cyber-neuro-physical
continuum. The structure suggests the cross-layered defense strategies which will decrease the cumulative Risk Index (R = E x I) by
half or two-thirds of the cumulative Risk Index because of the layered resilience, cryptographic integrity and cognitive safety. The

philosophy is consistent with the paradigms of the secure-by-design and safety-by-intent of the 1ISO 14971, IEC 62443 and FDA

Cybersecurity Guidelines (2023) of medical Al devices. Table 9 summarizes the proposed mechanisms.

Table 9: Cross-Layer Defense Strategies and Expected Impact

safety alerts

Layer Primary Threats Proposed Defense Biomedical / Al Rationale Expected
Mechanisms Risk
Reduction
(%)
Signal Signal injection, EMI Adaptive Kalman Maintains cortical waveform 60-65%
Acquisition spoofing, sensor drift filtering; Wavelet- integrity (EEG/ECoG 10—
Layer [54] based spectral anomaly 100 pV); prevents false
detection; AES-256 motor command initiation or
encrypted biosignal neurostimulation errors
buses
Firmware & Firmware tampering, Secure boot (ECDSA); Protects neural safety 55-60%
Hardware privilege escalation, Firmware  attestation parameters  (voltage <3
Layer [55] bootloader injection via RA-TLS; TPM 2.0 Vicm); ensures authenticity
hardware trust anchor and  non-repudiation  of
embedded neurocontrollers
Al Model Adversarial Adversarial training (e Enhances neural decoding 50-65%
Layer [56] perturbation, data < 0.05 uVv); resilience; prevents cortical
poisoning, model Differentially  Private pattern leakage and
inversion SGD; Federated unauthorized model
Learning replication
Network & MITM attacks, TLS 13 + Perfect Preserves telemetric integrity 60-70%
Cloud Layer replay, exfiltration Forward Secrecy; for neural streaming; ensures
[57] X.509 device identity; traceable, immutable audit
Blockchain audit trails for medical Al operations
(Hyperledger Fabric)
Side-Channel EM/power analysis, Shielded circuits; Reduces leakage of model 40-55%
Layer [58] timing leakage randomized task operation patterns or neural
scheduling; EM timing parameters; enhances
emission masking confidentiality of on-chip
operations
Human Cognitive User awareness Ensures ethical 45-55%
Interaction manipulation, training; Cognitive neurofeedback; prevents
Layer [59] phishing calibration, feedback validation psychological manipulation
neurofeedback (GSR + eye-tracking); or false rehabilitation
deception Real-time Bayesian conditioning
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Cross-Layer Multi-vector Secure enclave Detects coordinated attacks >65%
(Systemic) poisoning, firmware— architecture; Multi- spanning multiple domains;
[60] model bridging domain anomaly aligns Al safety with clinical
correlation; Federated governance
security analytics

The table provided above defines a hierarchical nature of the approach to security which adheres to the neurophysiological sequence,
cortical learning through behavioural performance. The framework transforms the traditional BCls to resilient neuro-cyber
ecosystems by implementing countermeasures against adaptive filtering, federated learning, and blockchain auditability. This helps
to stop malicious involvement as well as improve such indicators of clinical reliability as Neural Safety Integrity (NSI) and Clinical
Trust Index (CTI).

Interestingly, low levels (signal and firmware) of risk reduction is multiplicative, with downstream impact, and can decrease the
propagated Al or behavioral defects by 70 % in simulation based threat models. The complex of these safeguards in the medical
sense entails a straightforward mitigation of the risk of iatrogenic neurostimulation, cortical misactivation, and information-driven
bias of the cognitive, which will give functional safety and neuroethical adherence to the next-generation Al-powered BCls. Besides,
the model allows adjusting the gap between the cyber-resilience and clinical reliability over the long term to alter the cybersecurity
controls to the clinical performance measurements (e.g., stimulation precision, latency, and cortical coherence). To assist in justifying
the given defenses, a hybrid validation process has been established, which is a conglomeration of the security evaluation that has
been executed with the aid of the simulations and the clinical performance benchmarking. The framework considers the robustness-
safety trade-off as having three major axes, i.e. technical resilience, signal fidelity and clinical dependability.

TABLE 10: EVALUATION AND METRICS

Metric Definition Measurement Approach Expected Reference
Improvement with
Proposed Framework

Signal-to-Noise Ratio of neural signal power Simulated  cortical noise 1 20-25 % in mean [61]
Ratio (SNR) to interference (EEG/ECoG injection (10-100 pV) with SNR stability

baseline) adaptive Kalman filters
Latency Delay introduced by security End-to-end timing analysis < 12 ms (within ISO [62]
Overhead (At) layers between signal capture and 14708-3 compliance)

output response

Adversarial Model  accuracy  under PGD/FGSM attack 1 18-22 % robustness [63]
Robustness gradient-based perturbation simulation (¢ < 0.05 pV) retention
Index (ARI)
Privacy Loss (g) Differential privacy leakage DP-SGD evaluation during l 35-40 % [64]

measure model updates information leakage
Neural  Safety Probability that stimulation In-silico patient trials Risk reduction = 60 % [65]
Integrity (NSI) remains within safe (cortical voltage < 3 V/cm)

neurophysiological

thresholds
Clinical ~ Trust Composite score of clinician Expert survey (n = 42 neuro- 1 025 £ 0.07 over [66]
Index (CTI) confidence and  device rehabilitation specialists) baseline (p < 0.05)

reliability

All of these verification means are the signs that the medical performance requirements can be facilitated by the introduction of cross-
layer security systems which will provide real-time neural communication and cryptographic integrity, Al resilience and
trustworthiness. Together with the engineering of cyber defense and clinical validation of this dual-domain assessment, a precedence
of certifiable and Al-assisted BCls at both FDA and MDR cybersecurity standards will be created.
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FIGURE 3: QUANTITATIVE EVALUATION METRICS
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As shown by the quantitative results as depicted in Figure 3, the proposed cross-layer BCI architecture is graphically justified in the
sense that it outperforms the baseline model in the entire areas of key performance. This is reflected in the SNR, NSI and CTI
improvements that prove that neurophysiology signal faithfulness and clinical reliability are improved and Reduced Latency and
Privacy Loss that ascertain that the security measures are computationally efficient and privacy preserving.

In general, the figure shows that adaptive filtering, adversarial defense, or the application of the differential privacy in the BCI
pipeline do not lead to any significant change in the neural accuracy, model robustness, or the capability to obtain the certifications
of FDA and MDR as a safety-critical system.

CONCLUSION

The interplay between artificial intelligence and brain-computer interface (BClI) technology has developed a novel neurocommunication
domain, which is rehabilitation and cognitive augmentation. The neural data decoding and neurostimulation capability in an adaptive
sense, however, is multilayered vulnerable, similarly, as revealed in this paper, between signal acquisition and cloud-based Al systems.
The threat taxonomy with six levels has shown that the exploitability does not exist at the level of any individual component but the
dependence between the layers, in the case when the medical firmware would be involved in the communication with machine learning
inference and wireless data transfer. This was a quantitative modeling procedure, which we used Risk = Exploitability x Impact (scaled
to 100) for finding that signal-level and firmware vulnerabilities are the most harmful downstream risks because they may lead to neural
misactivation or iatrogenic neurostimulation. These are not just effects since they are not just the computational but deep-set clinical
effects, which may undermine patient safety and motor control not to mention the cognitive stability. To make the Al more specific
and responsive, it also makes the attack surface larger, and establishes new threats including adversarial perturbations of EEG, model
inversion attacks, and neural biomarkers side-channel leakage. An all-encompassing solution to all these problems can be provided by
a multi-layer defense paradigm that takes into consideration the adaptive signal filtering, the firmware attestation, the adversarial
robustness of Al training, and the blockchain-based data auditing.

The results were made clear since the Neural Safety Integrity (NSI) and Clinical Trust Index (CTI) assessment tools proved that the
security interventions could be a trustworthy addition to the reliability, and the clinical latency and safety limits are not violated, proving
that it is possible to have medically aligned cybersecurity. In a larger scale, it has been highlighted in the findings that neurosecurity
must be scaled to neurotechnology. Future studies must combine real time neuro-signal-based intrusion detection, federated model
training with privacy preserving gradients and neuroethical audit models that are both standard (like FDA health software safety
regulations in 2023 and I1SO 81001-5-1). The mission is to come up with reliable Al powered BCls that would be capable of decoding
the human mind in addition to securing the mind such that when using neural interfaces in future smart neuroprosthetic, it would be of
value to the clinician and withstand cyber-attack.
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