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ABSTRACT

This paper discusses the ways in which chemical and physical carcinogens remodel the epigenome to start, foster and advance
cancer. The background integrates evidence that DNA methylation drift, histone-code disruption, non-coding RNA
reprogramming, and 3D chromatin remodeling are early, reversible processes meditating the connection between exposure and
altered gene expression, genomic instability, and development of malignant phenotypes. The aim is three-fold: (i) to identify
exposure-dependent epigenetic marks of interest to key agents (e.g., PAHs, nitrosamines, heavy metals, ionizing/ UV radiation);
(i) to benchmark dose, timing, and tissue context with pathways of interest (DNA repair, oxidative stress, apoptosis, immune
evasion); and (iii) to assess epigenetically-grounded preventive approaches that restore epigenetic homeostasis. In such
experiments, we anticipate a unified framework to be derived regarding exposure-agnostic versus exposure-specific marks,
sentinel loci and chromatin domains having high predictability regarding early detection, and evaluation of interventions
including dietary consumption of methyl donors, HDAC/DNMT inhibitors at regulatory doses, circadian timing reset, and
physically-induced epigenetic resilience. The paper envisages submitting a translational pipeline of exposure assessment, a liquid-
biopsy epigenomics, and a risk-adapted prevention trial. Together it contends that high-resolution epigenetic mapping will enable
heterogeneous exposures to be translated into prevention targets.
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INTRODUCTION

Cancer is one of the main health issues worldwide, and approximately 10 million people die every year [1,2,3,4]. In addition to
genetic mutations, epigenetic changes are also becoming central causes of carcinogenesis. The epigenome in the presence of
chemical and physical carcinogens, including polycyclic aromatic hydrocarbons, nitrosamines, heavy metals, and UV or ionizing
radiation, is modified, altering the balance of DNA methylation, histone modifications, and non-coding RNA regulation [5,6,7].
These mutations rearrange the expression of genes and structure of chromatin resulting in genomic instability and malignant
development. Such reversible processes are especially important because they offer prevention and intervention opportunities by
using an epigenetically specific approach [8,9].

PROBLEM STATEMENT

Regardless of the developments in the field of oncology, there has been a long-lasting problem with cancer prevention intervention
in the context of exposure-induced epigenetic remodel. Before the appearance of genetic mutations, DNA methylation drift,
histone-code disruption, and non-coding RNA deregulation initiated by carcinogens trigger the start of the process of tumor
formation [10,11,12]. Existing measurements mainly target genotoxic pathways at the cost of early changes in the epigenome,
which can be used as risk biomarkers [5,13]. Furthermore, the heterogeneity of different tissues types and different exposure
conditions makes it expensive to predict the malignant outcome. Standard therapies do not replenish the epigenetic balance and
there remain significant deficiencies in chemoprevention and early diagnosis. In the absence of a cohesive system of exposure-
specific and exposure-agnostic epigenetic marks, risk stratification will be limited and this will delay prevention, and not deal
with the increasing burden of environmentally associated cancers.

RESEARCH SIGNIFICANCE
The contribution of this research is that it highlights that epigenetic remodeling is a targetable process that is reversible in chemical
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and physical carcinogenesis. Through systematic discovery of exposure-dependent epigenetic signatures, it also allows early
biomarkers of high-risk populations to be discovered [5]. The potential of high-resolution mapping of the epigenome has a
translational role in liquid-biopsy screening, which increases the detection of cancer predisposition at pre-malignant stages [1].
Also, preventive intervention, including dieting with methyl donors, DNMT/HDAC inhibitors, circadian rhythm and natural
compounds-based epidrugs, can be used to re-establish epigenetic homeostasis [8,14]. The connection of the epigenomic
regulation with the inflammation pathways goes a step further in understanding how sustained exposures increase cancer
development [10,15]. Finally, this study offers an outline of risk-tailored, personalized prevention trials, which will be
instrumental in bridging key gaps in cancer prevention as well as advance the move toward therapeutic prevention instead of
treatment based on epigenetic resilience.

LITERATURE REVIEW

The role of epigenetic changes is being increasingly recognized as key mediators between environmental exposures and
carcinogenesis as well as an increasing body of evidence demonstrates their clinical importance. EI Omari et al. [26] claim that
curcumin, EGCG and sulforaphane have been used as natural epidrug because they target DNMTs and HDACsS, activate tumor
suppressor genes, and regulate non-coding RNAs networks. Following this, Bakrim et al. [16] focus on the idea of so-called epi-
nutrients, as dietary methyl donors and bioactives reset one-carbon metabolism, DNA methylation, and histone modifications,
which indicates the possibilities of precision nutrition approaches depending on exposures to carcinogens. This is however
complicated by metal-induced oxidative stress. Bouyahya et al. [8] prove that cadmium stimulates alterations in DNA methylation
due to the development of ROS and histone imbalance, but epigenetic balance in redox-sensitive cells can be reestablished using
antioxidants, which is a promising chemopreventive option. On the regulatory RNA level, Wang et al. [17] argue that
environmental carcinogens resetting IcnRNAs to influence p53, NF-kB, and EMT signaling pathways sets up IcnRNA signatures
as a promising biomarker to attribute disease exposure and early intervention. In line with a mechanistic exploration, Sewduth
and Georgelou [18] maintain that both mutational and epigenetic signatures are faithfully recapitulated in preclinical carcinogen
models, allowing dose-time-tissue mapping, but warn of species-specific shortcomings. Viewing risk even bigger, Harrison and
Doe [19] believe that chemicals change the probability of cancer by affecting cancer cells division by epigenetic control, mutation
fixation, and transformation possibility, and early epigenetic endpoints are an essential part of hazard analysis. The overall
findings of these studies come down to the fact that the disruption of epigenetic networks by chemical and physical exposures
can be repaired via epi-nutrients, phytochemicals, antioxidants, and IncRNA-directed therapies, which can be used as a
translational prevention pipeline.

METHODOLOGY

The study used a secondary approach and uses peer-reviewed articles, scientific reports and validated databases to study
carcinogen-induced epigenetic mechanisms. Secondary data utilization has the following benefits: it provides access to high-
quality and wide-range evidence in molecular biology, oncology, and toxicology studies. It allows to synthesize various
experimental results, which enhances reliability and comparative analysis. Secondary sources also save in time and resources, as
long-term results of DNA methylation, histone changes and non-coding RNAs can be reviewed without lengthy laboratory tests
being conducted. This strategy enables unification of big data, which provides more analytical depth and a solid basis of
discovering trends of preventive measures against cancer spread.

environmental pollutants as carcinogenic triggers

Criteria Inclusion Exclusion

Study Type Peer-reviewed journal articles, systematic reviews, and | Non-peer-reviewed papers, blogs, news
meta-analyses focused on epigenetics and carcinogenesis articles, editorials, or anecdotal reports

Publication Studies published between 2021-2025 to ensure relevance | Studies published before 2021 unless

Timeline and up-to-date findings highly cited as seminal work

Focus Area Research  examining DNA  methylation, histone | Studies unrelated to epigenetic
modifications, non-coding RNAs, oxidative stress, or | mechanisms, or those focusing only on
preventive nutritional/therapeutic strategies related to | genetic mutations without epigenetic
carcinogen exposure context

Carcinogen Studies analyzing heavy metals, polycyclic aromatic | Studies that assess lifestyle factors (e.g.,

Exposure hydrocarbons ~ (PAHs), industrial  chemicals, or | smoking, alcohol, diet) without specific

carcinogen-epigenetic linkage

Population/Model

Human studies, animal models, and cell line studies relevant
to carcinogen-induced epigenetic changes

Studies unrelated to humans or standard
biological models (e.g., plant studies)

methodological details

Language Published in English to ensure accessibility and consistency | Non-English  publications due to
translation barriers
Data Availability Full-text studies with accessible data and clear | Abstract-only studies or paywalled

reports with insufficient methodological
transparency

RESULT AND DISCUSSION

Carcinogen-Induced DNA Methylation Drift as an Early Biomarker of Cancer Risk

A signature of carcinogen exposure and early neoplasia is the DNA methylation drift. This is confirmed by Desaulniers et al. [5],
who found that non-genotoxic carcinogens change the CpG island methylation, silencing cancer suppressors such as p16 and
BRCAL. Bouyahya et al. [8] underline that aberrant methylation is reversible, and this makes it a promising prevention biomarker.
Research indicates that arsenic has the effect of hypomethylation of repetitive parts and hypermethylation of promoter regions,
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which is a two-sided imbalance that contributes to genomic instability [20,21,22].
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Figure 1: Epigenetic modifications regulating gene expression through DNA, histone, and RNA mechanisms
(Source: [8])

Correspondingly, Kumar et al. [23] report exposure to microplastic changes the mechanism of methylation, and it disrupts DNA
repair signaling. The breast tissue is especially vulnerable; Singh [24] shows that endocrine-disrupting chemicals lead to a change
in DNA methylation associated with estrogen signaling. Inflammatory cues further modulate methylation; Vezzani et al. [10]
argue chronic inflammation reshapes methyl marks at cytokine genes. These findings are supported by preclinical findings:
Sewduth and Georgelou [18] demonstrate that carcinogen-induced models can reproduce methylation signatures that are
predictive of malignancy. Quantitative analyses point to the fact that chemical agents can elevate the chance of cancer by adjusting
the likelihood of mutation fixation [19,25]. The role of nutrition is essential; Bakrim et al. [16] emphasize folate and choline as
epi-nutrients restoring the regular processes of methylation. According to [26], there are also phytochemicals, such as curcumin,
which rediscover methyltransferase activity. All in all, methylation drift acts as a sentinel biomarker in various tissue systems,
and it is confirmed by Sebens [27] that genetic susceptibility enhances its impact. Prevention is based on targeting this drift with
the help of dietary, pharmacologic, and antioxidant interventions.

Histone Modification Disruption and Its Role in Malignant Transformation

Histone acetylation, methylation and phosphorylation are major transcriptional plasticity regulators, and their impairment by
carcinogens hastens malignancy. According to [1], the overactivity of HDAC inhibits pro-apoptotic genes, which promotes
transformation. Equally, Desaulniers et al. [5] point out that the histone H3 lysine methylation observed following the exposure
of cells to non-genotoxic carcinogens disrupts the repair of DNA. Its been shown that cadmium induces oxidative stress that leads
to a distortion of histone acetylation equilibrium. The markers of H3K9me2 and H3K27me3, which are modulated by arsenic,
are facilitated through NRF2-MDIG cooperation, which supports cancer stem cells characteristics [20]. Vezzani et al. [10] also
contribute that inflammatory signaling disrupts histone code at NF -B target loci to form a pro-tumorigenic chromatin picture.
This is validated by experimental models; Sewduth and Georgelou [18] identify consistent histone changing patterns in cancers
that have been experlmentally mduced by carcmogens
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Figure 2: DEN-induced liver cancer characterization using staining and transcriptomic pathway analysis
(Source: [18])
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Harrison and Doe [19] present that the chemicals alter the rate of cell division regulated by histone increase the probability of
mutations. Epigenetic drugs are promising: Bouyahya et al. [8] report that natural products such as sulforaphane block the action
of HDACs and recover apoptosis. El Omari et al. [26] also refer to resveratrol and EGCG as histone modulators. Ulhe et al. [28]
discuss the use of alpha-linolenic acid as the candidate that targets the epigenetic modifiers by using network pharmacology.
Nutritional pathways are also—still of significance, as Bakrim et al. [16] stress that epi-nutrients maintain histone mark stability.
Lastly, Grunt and Heller [29] emphasize histone modifications as co-operating with tissue structure and metabolism, which
supports a multifactorial carcinogenesis paradigm. Therefore, histone interference is a mechanistic interface between carcinogen
exposure and malignancy.

Non-Coding and Long Non-Coding RNAs as Drivers of Exposure-Linked Carcinogenesis

Non-coding RNAs (ncRNAs) and long non-coding RNAs (IncRNAs) are becoming central to the regulation of malignancy by
carcinogens. Wang et al. [17] show how environmental factors such as cadmium and arsenic disrupt the activity of the IncRNAs
that regulate p53, NF-kB and EMT signaling pathways, promoting invasion and immune avoidance. Kumoglu et al. [1] also
believe that a lack of microRNA silencing of tumor suppressor functions increases malignant potential. Vezzani et al. [10] also
links inflammation to ncRNA reprogramming, demonstrating that miRNA-mediated pro-oncogenic networks are driven by
chronic cytokine signaling. These responses are replicated in preclinical models; Sewduth and Georgelou [18] affirm that the
changes in the expression of the RNAs in tissues exposed to carcinogens resemble clinical tumors. Harrison and Doe [19]
introduce a possible risk of transformation related to the fixation ofgery ofRNA-directed gene expression states. The compounds
in the diet affect such circuits: Bouyahya et al. [8] state that curcumin is able to regulate the expression of the oncogenic miRNAs
whereas EI Omari et al. [26] emphasize that phytochemicals can regulate the expression of the apoptosis-related InNcRNAs. Bakrim
et al. [16] highlight that epi-nutrients improve RNA-mediated chromatin remodeling, which stabilize gene expression
programmes. Oxidative stress is also an overlap. Authors demonstrate that POS regulates the expression of ncRNA during
cadmium stress. Bi et al. [20] include that arsenic-induced IncRNA changes collaborate with NRF2 pathways in stemness. RNA
expression is perturbed when exposed to even microplastic and distorts transcriptional fidelity [23]. Sebens [27] emphasizes that
genetic predisposition aggravates the weaknesses of the ncRNA. Lastly, Ulhe et al. [28] propose that alpha-linolenic acid plays a
role in regulating the activity of the ncRNA in control of epigenetic modifiers, which makes it preventable. Collectively, the
dysregulation of ncRNA offers the mechanisms evidence of exposure-specific carcinogenesis and mediators of targeted
intervention.

Oxidative Stress as a Mediator of Metal-Induced Epigenetic Remodeling

The key intermediary between exogenous metals and epigenetic reprogramming is the oxidative stress. Bouyahya et al. [8] show
that cadmium triggers the accumulation of ROS, which changes DNA methylation, histone acetylation, and expression of non-
coding RNA, and resets transcriptional profiles. Bi et al. [20] reaffirm that arsenic exposure stimulates NRF2 transcriptional
activation and MDIG-dependent histone methylation that produce cancer stem-like phenotypes. These effects become more
pronounced in inflammatory environments; Vezzani et al. [10] refer to inflammation-mediated ROS, which are chromatin
remodeling boosters. Grunt and Heller [29] emphasize that oxidative stress is energetically repaired in a way that depends on
genetic and tissue-specific mechanisms, exacerbates the epigenetic drift. This framework is supported by preclinical carcinogen
models; according to Sewduth and Georgelou [18], signatures of oxidative damage are found in chromatin structure. According
to Harrison and Doe [19], the ROS-induced epithelial modifications accelerate the cell division and mutation rates. Intervention
strategies have potential: Bouyahya et al. [8] and EI Omari et al. [26] indicate that natural antioxidants such as resveratrol and
EGCG inhibit nanosome and reduce the level of imbalance in the epigenetics. Nutritional modulation is also important; Bakrim
et al. [16] report folate, selenium, and methyl donors as epi-nutrients against the methylation drift caused by ROS. Ulhe et al.
[28] indicate that the alpha-linolenic acid restores redox-sensitive epigenetic regulation. Besides, Singh [24] highlights that
endocrine-disrupting chemicals produce oxidative stress that modifies the epigenetics of breast tissue. Kumar et al. [23] carry this
to microplastics that cause ROS that interferes with DNA repair. Sebens [27] includes the genetic susceptibility that makes a
person more susceptible to ROS and makes cancer more dangerous. As a unit, oxidative stress is a common mechanism whereby
metals and environmental agents cause instability in the epigenome, solidifying prevention strategies of antioxidant action.

Preventive Potential of Epi-Nutrients, Phytochemicals, and Antioxidant Strategies

To prevent carcinogenesis, it is worthwhile to restore epigenetic homeostasis, with dietary and pharmacological approaches
having promise. According to Bakrim et al. [16], epi-nutrients such as folate, choline, and selenium are essential to one-carbon
metabolism, whereby the integrity of DNA methylation is maintained. Natural epidrugs, including sulforaphane and EGCG, are
discussed by Bouyahya et al. [8] as inhibitors of DNMTs and HDACs. El Omari et al. [26] also find resveratrol to be a multi-
target controller of histone marks and the expression of ncRNA. The evidence is presented by Ulhe et al. [28], which states that
the dietary-based approach may be extended by using alpha-linolenic acid to modify the epigenetic modifiers by network
pharmacology. Bouyahya et al. [8] highlight the role of antioxidants that reduce cadmium-induced POS, normalize the profiles
of methylation and histone proteins. On the same note, Bi et al. [20] show that inhibiting NRF2-MDIG interaction can inhibit
arsenic-induced epigenetic remodeling. Singh [24] notes that dietary interventions can offset the impacts on the breast tissue of
endocrine-disrupting chemicals on the epigenome. Grunt and Heller [29] point out tissue context, whereas Sebens [27] points out
genetic vulnerability. Kumar et al. [23] extrapolate the prevention to microplastic-induced epigenetic disturbance. Efficacy is
confirmed in preclinical models, where Sewduth and Georgelou [18] confirmed that phytochemicals normalize the epigenetic
patterns in tumors induced by carcinogens. Vezzani et al. [10] also associate the role of inflammation control with
chemopreventive activity of dietary compounds. Kumoglu et al. [1] have proved that early malignant programs can be reversed
by means of epigenetic modulation. Harrison and Doe [19] additionally contend that preventive measures reduce the likelihood
of transformation through control of division and mutation repair. The combination of these results supports the use of combined
dietary, antioxidant, and epigenetic drugs as frontline cancer prevention pipelines.

190
VASCULAR & ENDOVASCULAR REVIEW

www.VERjournal.com


http://www.verjournal.com/

Epigenetic Modifications in Chemical and Physical Carcinogenesis: From Mechanisms to Preventive Strategies

RESEARCH LIMITATION

The study has some major drawbacks associated with secondary literature and evidence based on laboratory. Most of the
epigenetic research relies on models in vitro or in animals, which do not necessarily reproduce human carcinogenic evolution.
The complexity brought by variations in the exposure rate, genetic susceptibility, and environmental conditions limits
generalisation. Further, causal conclusions about the impact of carcinogen exposure on epigenetic drift are limited due to the few
long-term cohort studies. A lack of comparability of results is also caused by data heterogeneity between methodologies and
biomarker heterogeneity. In this way, conclusions are left tentatively interpretive, not generally conclusive.

FUTURE SCOPE

Longitudinal human studies should be the focus of future research where epigenetic biomarkers are combined with exposure
assessment. New technologies with the use of multiple omics, such as genomics, transcriptomics, and epigenomics, can give
comprehensive information about the changes caused by carcinogens. The creation of standard biomarker panels will enhance
the reproducibility and early diagnostic use. Moreover, single-cell sequencing and editing with the help of the CRISPR can assist
in mapping specific molecular pathways. There are also promising directions with clinical trials assessing epi-nutrients and
phytochemicals in prevention strategies. Increasing the data globally among different populations will enhance the translational
possibilities.

CONCLUSION

This study highlights the vital importance of epigenetic processes to mediate the impact of carcinogenic exposures and how DNA
methylation, histone modification, and non-coding RNA are linked to jointly change gene expression and promote cancer
development. The above evidence shows that carcinogens like heavy metals, PAHSs, and industrial pollutants lead to lasting
epigenetic changes that destroy tumor suppressor signaling and hasten the development of the tumor. This research by compiling
secondary information based on peer-reviewed sources confirms that all these mechanisms are not separated but rather co-
dependency, constituting a complicated regulatory network that is responsive to environmental cues. Notably, the results also
point to the prophylactic and curative potential of epigenetic mark manipulation by dietary interventions and newer epigenetic
agents, rendering a feasible plan of reducing the risk of cancer. Although restrictions are still in place as far as population diversity
and long-term impact are concerned, the article highlights the research of the epigenome as a frontier of precision medicine and
an essential direction in lowering the cancer burden worldwide.
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