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ABSTRACT

Hospital overcrowding and inefficient bed allocation remain persistent challenges in multispecialty healthcare systems,
particularly during pandemics and peak admission periods. Traditional scheduling methods fail to adapt dynamically to
fluctuating patient inflows, resulting in long waiting times and reduced quality of care. This study introduces a secured and
adaptive hospital occupancy management framework that integrates Deep Deterministic Policy Gradient (DDPG) reinforcement
learning with cloud-based deployment and Ciphertext-Policy Attribute-Based Encryption (CP-ABE). Patient data are
preprocessed through normalization and imputation, and grouped into clinically homogeneous cohorts using Mahalanobis
distance clustering. The DDPG agent learns optimized allocation strategies by minimizing wait times, improving fairness, and
maximizing bed utilization. Deployed on AWS cloud infrastructure, the system ensures scalability and real-time integration across
hospital networks, while CP-ABE enforces fine-grained access control for data security. Experimental evaluation on a dataset of
50,000 patient records demonstrates superior performance compared to conventional machine learning and rule-based methods,
achieving 87.2% bed utilization, an average 12.3-minute reduction in wait time, and faster convergence with a runtime of 41.3
seconds. The results establish the proposed framework as a robust, secure, and scalable solution for real-time hospital occupancy
management in cloud-enabled healthcare ecosystems.

KEYWORDS: Reinforcement Learning, Deep Deterministic Policy Gradient (DDPG), Hospital Occupancy Management, Cloud
Computing, Attribute-Based Encryption (ABE).

How to Cite: Mrs. Pooja Ruturaj Patil, Dr. Jaydeep B. Patil, Dr. Sangram T. Patil, (2025) A Secure and Scalable DDPG-Based
Framework for Dynamic Hospital Occupancy Management in Cloud-Enabled Healthcare Networks, Vascular and Endovascular
Review, Vol.8, No.5s, 263-274.

INTRODUCTION

Overcrowding in emergency departments (EDs) and inefficient hospital bed allocation remain major challenges in healthcare
systems worldwide. Hospitals often experience shortages of medical staff, infrastructure, and essential equipment, which are
further amplified during sudden surges in patient admissions. Such conditions lead to prolonged waiting times, delayed treatment,
reduced quality of care, and in severe cases, higher mortality rates [1]-[4]. Beyond the clinical consequences, overcrowding also
affects patient satisfaction and reduces the morale and productivity of healthcare providers [5].

The issue is particularly critical in regions with high population density, where the ratio of hospital beds to patients remains far
below global standards. This disparity, combined with seasonal disease outbreaks and pandemic conditions, significantly
increases pressure on hospital networks and delays timely patient care [6], [7]. Traditional hospital bed management systems rely
heavily on manual scheduling or heuristic methods, which perform adequately in static environments but fail to adapt dynamically
to fluctuating patient inflow, inter-departmental dependencies, and variable clinical conditions [8], [9].

Recent advances in deep learning have demonstrated effectiveness in medical prediction tasks, anomaly detection, and hospital
demand forecasting [10]-[15]. However, existing models often suffer from limited generalizability, poor scalability in real-time
hospital settings, and insufficient mechanisms to ensure data privacy during cloud-based integration [16]-[18]. Moreover, rule-
based and supervised learning approaches lack the ability to capture long-term dependencies or operate efficiently in continuous
action spaces, restricting their applicability for dynamic occupancy allocation [19], [20].

To address these challenges, this study proposes a secured and efficient hospital occupancy management framework that
integrates Deep Deterministic Policy Gradient (DDPG) reinforcement learning with cloud-enabled deployment and Attribute-
Based Encryption (ABE). The framework preprocesses hospital data using normalization and imputation, groups patients into
clinically homogeneous cohorts through Mahalanobis distance clustering, and trains a DDPG agent to learn adaptive allocation
strategies. Deployment on Amazon Web Services (AWS) ensures scalability and real-time integration across multispecialty
hospitals, while ABE enforces fine-grained access control to safeguard sensitive medical records [21].

The major contributions of this work are as follows.
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o Development of a reinforcement learning—based allocation strategy capable of dynamic adaptation to fluctuating patient
inflows and hospital constraints.

¢ Cloud-based integration that enables scalable, real-time occupancy management across hospital networks.

e Application of fine-grained encryption techniques to ensure data security, privacy, and compliance in healthcare
environments.

By combining adaptive intelligence with robust encryption, the proposed system advances the state of hospital occupancy

management, offering a scalable and secure solution for real-time decision-making in cloud-enabled healthcare ecosystems.

While the previous section outlined the broad challenges in hospital occupancy management, the following subsection highlights

the specific gaps in existing methods that motivate the proposed framework.

1.1 Motivation

In today’s healthcare systems, overcrowding and inefficient bed allocation remain major challenges that directly affect patient
care and hospital performance [1], [2]. During peak admission periods or emergencies, hospitals often struggle to align limited
bed capacity with unpredictable patient inflow, resulting in longer waiting times, underutilized or overburdened wards, and
compromised quality of care [3].

Traditional rule-based scheduling methods are not flexible enough to respond to rapid changes in patient demand. These systems
typically rely on fixed heuristics or manual decisions, making them poorly suited for real-time adaptive decision-making in
dynamic hospital environments [4].

Recent research has explored the use of machine learning and deep learning models for hospital admission forecasting and
occupancy prediction [5], [6]. Although these methods have shown promise, many depend on static assumptions, are not easily
scalable, and lack the ability to handle continuous decision processes. Furthermore, most existing frameworks do not leverage
cloud infrastructure effectively for coordinating multi-department or multi-hospital data, limiting their practical impact [7].

Another critical challenge is patient data privacy and security. With the increasing use of cloud-based platforms for storing and
sharing sensitive patient information, ensuring compliance with privacy regulations through strong encryption and fine-grained
access control has become essential [8]. Without such protections, healthcare institutions face serious risks of unauthorized data
exposure, which hinders the adoption of intelligent hospital management systems.

To address these issues, this study proposes a DDPG-based reinforcement learning framework for hospital bed occupancy
management. The approach integrates cloud computing for scalability and Attribute-Based Encryption (ABE) for secure and
controlled data sharing. By learning from both historical and real-time patient data, the framework aims to achieve shorter waiting
times, improved bed utilization, and stronger data security, making it well-suited for modern, distributed healthcare environments

(9], [10].

RELATED WORKS

Alvarez-Chaves et al. [16] developed an Attention-based DNN model to predict ED patient admissions by utilizing several
exogenous factors to increase the model's accuracy. Additionally, records don't give a whole picture of how patients use the
emergency room. In order to improve the accuracy of admissions prediction, exogenous information was incorporated, including
calendar data, weather, air quality, allergies, and information retrieved from the internet using Google Trends. This was done by
relying on the possibilities provided by the attention mechanism. However, attention-based DNNs are prone to overfitting because
of their large capacity and intricate design, particularly when the dataset is unbalanced or lacks variety in occupancy patterns.

An autonomous machine learning approach for patient admission scheduling was presented by Gochhait et al. [17]. The
framework aids hospitals in improving the decision-making process for patient bed occupancy with regard to departments and
ilinesses. The system was used in a real-time setting and was shown to improve the overall efficiency of hospital bed allocation.
However, complicated limitations, including staff availability, isolation measures, speciality-specific bed requirements, and
patient prioritizing criteria, are present in hospital contexts. These hard and soft limitations may be difficult for standard machine
learning algorithms to express or adjust to during learning or inference.

The Temporal Fusion Transformer is a unique deep learning architecture that forecasts prediction intervals and point predictions
for 4 weeks using calendar and time-series variables, as reported by Caldas et al. [18]. On the other hand, the Temporal Fusion
Transformer is a deep and complex model that incorporates gating layers, embeddings, and other attention processes. In real-time
or resource-constrained settings, such as hospitals, this complexity may be unfeasible because of the substantial computer
resources required for both training and inference.

To predict patient flow in emergency rooms, Sharafat et al. [19] introduced PatientFlowNet, a convolutional neural network
model. PatientFlowNet's architecture allows it to learn from several flow variables at once across an exponentially long input
window while maintaining a manageable model size. However, without retraining, PatientFlowNet could not adjust well to real-
time updates or evolving hospital operations. In dynamic, real-world environments where clinical procedures and patient
admission patterns change over time, this lack of flexibility might eventually impair performance.

A Decision Support System (DSS) based on the combination of a simulation tool to assess the impact of particular management
strategies on ED behavior and a Deep Neural Network for handling the sources of uncertainty was presented by Fabbri et al. [20].
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The most appropriate policy to be adopted in the ED is dynamically suggested by the DSS and is intended to be operated online.
However, the "black-box™ character of DNNs is one of the biggest obstacles to incorporating them into a DSS. In crucial
healthcare applications, these models frequently produce incredibly precise predictions without providing any justification for
their choices, which erodes confidence and impedes clinical validation. Table 1 represents the comparison of various state-of-
the-art models.

Table 1: Comparison of various existing models

Authors Technique Limitations Performance
Alvarez-Chaves et al. | Attention-based DNN | Attention-based DNNs are prone to | MAPE, R2, MBE
[16] model overfitting
Gochhait et al. [17] Autonomous machine | Hard and soft limitations may be | -

learning approach difficult for standard machine

learning algorithms to express or
adjust to during learning or

inference.
Caldas et al. [18] Temporal Fusion | Complexity in real-time or resource- | MAPE, MSE, RMSE, MIS
Transformer constrained  settings may be

unfeasible because of the substantial
computer resources required for
both training and inference.
Sharafat et al. [19] PatientFlowNet Real-world environments where | MAE, MAPE, RMSE, R2
clinical procedures and patient
admission patterns change over
time, this lack of flexibility might
eventually impair performance.
Fabbri et al. [20] Decision Support | these models frequently produce | Mean, standard deviation,
System incredibly  precise  predictions
without providing any justification
for their choices, which erodes
confidence and impedes clinical
validation

PROPOSED METHODOLOGY

The proposed framework integrates reinforcement learning with secure cloud deployment to achieve dynamic and privacy-
preserving hospital occupancy allocation. The methodology consists of four main components: data preprocessing, batch creation
using Mahalanobis distance, reinforcement learning model training with DDPG, and attribute-based encryption for secure data
handling. Figure 1 illustrates the overall block diagram of the proposed system.

Pre-processing

Min-max Batch creation Model training

/ normalization \ R —
Data collection Mahalanobis distance || DccP Deterministic

. Policy Gradient
Missing Value

Dataset Imputation l
Amazon Web Attribute based
. - .
Services encryption
Data storage Encryption

Fig. 1. Basic block diagram of the proposed model
3.1 Pre-processing
Effective data preprocessing plays a crucial role in enhancing both the accuracy and stability of reinforcement learning models.
In this study, two primary preprocessing operations are applied: Min—Max normalization and missing value imputation.

Min—-Max normalization: Hospital datasets contain diverse attributes—such as patient demographics, clinical history, and
occupancy records—that vary widely in scale and distribution. To ensure uniformity and prevent scale dominance, Min—Max
normalization is applied to rescale all features into the range [0,1]. Unlike z-score normalization, which assumes a Gaussian
distribution, Min—Max scaling preserves the original relationships among features while making the data more suitable for
reinforcement learning algorithms that operate in continuous action spaces. The normalization procedure is expressed in Equation

Q).
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Norm, = 2x ~Min, )
X Max, —Min,

where, Dy represents the data point, X represents the data point's minimum value and Max, indicates the data point's

maximum value or the batch instances. This transformation preserves relationships among features while preventing bias from
scale differences.

Missing value imputation: Healthcare datasets frequently contain incomplete records caused by missing entries in demographic
information, admission details, or treatment logs. To ensure data integrity and maintain model reliability, median imputation is
employed. This method is chosen for its robustness against outliers and its ability to preserve the central tendency of each feature.
Specifically, missing values within each class are replaced with the corresponding class-wise median, as expressed in Equation
2). R

b; = medlan{i:buecm}{bij} )

This step ensures integrity of the dataset before further processing, enabling the reinforcement learning agent to operate on
structured and reliable inputs.

3.2 Batch creation using Mahalanobis distance

After preprocessing, patient records are grouped into homogeneous batches to enhance the learning process. Mahalanobis distance
(MD) is used to cluster patients with statistically similar attributes, considering correlations among variables such as age,
comorbidities, vitals, and admission urgency. The distance between a point and a distribution in an -dimensional space is computed
as:

Mahalanobis distance = i(Yj —v; Futly, -v;) ®)

j=1
whereYj is the data value vectorinrow |, Y ' is the mean vector and UJI is the inverse of the covariance matrix. The square

of the Mahalanobis distance follows a chi-squared distribution with degrees of freedom, corresponding to the number of variables.
Patients with low MD values are clustered together, ensuring clinically coherent cohorts. These batches are then treated as
decision units by the reinforcement learning agent, enabling context-specific resource allocation policies that reduce waiting times
and balance occupancy across wards.

3.3 Model Training Using Deep Deterministic Policy Gradient (DDPG)

To dynamically allocate resources, the study employs the Deep Deterministic Policy Gradient (DDPG) algorithm, a model-free
reinforcement learning technique well-suited for continuous action spaces. The DDPG framework follows an actor—critic
architecture, consisting of actor network () that generates actions (resource allocation decisions) given the current state (hospital
occupancy, patient batch) and Critic network () that evaluates the actor’s actions using value estimation.Target networks (', ) are
maintained for stable updates. The behavior policy at time step is represented as:

qp:n(cp‘¢”)+a c~M )

where O represents the Gaussian noise that only occurs during training, @ is the network 17 's parameters and Cp is the state

space.
The fundamentals of offline training are explained here, as the policy is decided throughout the training phase. Bellman's principle
is used to evaluate the policy in this way:

B*(c,.a,)=Eli(c,.q,)]+ rargmaxB*(c,...q,.,) ®)

Ap
where y is the discount factor, i is the single-step reward, and B” is the ideal value function. Equation (5) shows that it is

possible to recursively determine the best assessment of the current condition and action composition. The deep networks Q and
Q' should be able to precisely replicate this iterative process. To determine it, the value network's updating error may be computed

as follows:
HB(p\¢B)=[(i(cp,qp)wB(cpﬂ,qM ¢B)+ B(cp,quc/ﬁB))]2 (6)
Upu = B(Cp‘¢n) ]

whereas the final word in Equation (6) pertains to the actual output of the current value network, the first two terms in Equation
(6) indicate the predicted B value from Equation (5). The actor network then improves its policy by maximizing the expected

o (6,)= EL- Ble, e, ) ®

where E(*) represents the expectation operator. The concept behind this process is that unpleasant or extremely rewarding
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experiences might teach us more than simple ones. Therefore, it is anticipated that the experience replay approach, which
highlights certain remarkable encounters, would increase learning stability and efficiency.
It is possible to characterize the likelihood of the sampled experience.

P =F /| > F ©)
g

F, =1/rank(y) (10)

where &, a hyperparameter that ranges from 0 to 1, is used to define the priority degree and Z (*) represents the entire index
g

in the experience pool. The significance level of a collection of experiences is indicated by rank(*), which may be computed
as follows: Lower alpha corresponds to uniform sampling of traditional DDPG

rank(y)=/Dg (y) 11)

This design enables the RL agent to iteratively refine its allocation strategy, associating efficient patient-bed assignments with
higher rewards, thereby reducing waiting times and optimizing occupancy levels.

The trained agent is deployed on Amazon Web Services (AWS) cloud infrastructure, enabling real-time integration with hospital
dashboards. The cloud-native setup ensures scalability, fault tolerance, and seamless communication with distributed hospital
networks.

While reinforcement learning addresses the dynamic allocation problem, safeguarding sensitive patient data during storage and
communication is equally critical.

3.4 Attribute based encryption

In the proposed framework, cloud infrastructure is utilized to transmit patient records, forecasts, and other sensitive health data.
To ensure data confidentiality and fine-grained access control, Attribute-Based Encryption (ABE) is employed. In ABE, an
attribute represents a property associated with either the data or the data consumer and serves as the fundamental building block
for defining access rights. An access policy determines which users or entities are authorized to access specific data. Typically,
this policy is represented as a policy tree, where attributes form the leaf nodes and Boolean operators (e.g., AND, OR, k-of-n
thresholds) form the intermediate nodes. The expressiveness of access control depends on how each ABE scheme structures the
policy tree; for example, some restrict the tree height or allow only specific logical operators, while others adopt matrix—vector
representations based on Linear Secret Sharing Schemes (LSSS) for greater flexibility.

ABE operates mainly in two paradigms: Key-Policy ABE (KP-ABE) and Ciphertext-Policy ABE (CP-ABE). Both approaches
require a set of public parameters (shared by encrypting parties) and private decryption keys (unique to each authorized user). In
KP-ABE, ciphertexts are associated with attribute sets, while access policies are embedded within decryption keys. This gives
the key authority significant control, as it determines access rights when issuing decryption keys. In contrast, CP-ABE associates
ciphertexts with access policies and decryption keys with attributes. This allows data owners to define access rules during
encryption, granting them greater flexibility and control over who can decrypt the data.

A typical ABE scheme involves four core algorithms: (i) Setup, which initializes system parameters and generates the master and
public keys; (ii) Encryption, which uses public parameters to encrypt data according to an attribute set or access policy; (iii) Key
Generation, which uses the master key to issue decryption keys tied to policies or attributes; and (iv) Decryption, which recovers
plaintext only if the attributes and policies satisfy the defined access structure.

In this study, CP-ABE is adopted because of its superior suitability for dynamic and distributed healthcare environments. CP-
ABE allows hospital administrators and data producers to define fine-grained access control rules based on attributes such as
department, user role, or clearance level at the time of encryption. This capability is particularly important in large hospital
networks, where multiple authorized professionals may need secure, real-time access to patient data. By enforcing attribute-based
access directly at the encryption stage, CP-ABE enhances privacy compliance, operational responsiveness, and data security.
Consequently, only authorized users can access specific categories of encrypted medical data, ensuring regulatory adherence and
safeguarding patient privacy within a cloud-integrated healthcare ecosystem.

RESULTS AND DISCUSSION

The proposed framework was implemented in Python using OpenAl Gym for environment simulation and Stable Baselines3 with
PyTorch backend for reinforcement learning agent development. The experiments were conducted on an Intel Core i5-10500T
(6-core CPU, 8 GB RAM). The RL agent was trained over 50,000-time steps using a synthetic dataset of 50,000 anonymized
patient records, representing realistic multispecialty hospital operations.

4.1 Dataset description

The experimental evaluation employed an anonymized dataset comprising 50,000 patient records, carefully designed to mirror
real-world operations within a multispecialty hospital environment. Each record integrates a diverse set of demographic, clinical,
and operational features relevant to hospital occupancy allocation. Key attributes include demographics (age, gender, and

267
VASCULAR & ENDOVASCULAR REVIEW

www.VERjournal.com


http://www.verjournal.com/

A Secure and Scalable DDPG-Based Framework for Dynamic Hospital Occupancy Management in Cloud-Enabled Healthcare
Networks

admission details), clinical history (previous medical history and previously prescribed tests, offering insights into prior diagnoses
and diagnostic patterns), current diagnostic status (ongoing tests and active treatment indicators), resource utilization (ward or
department allocation, bed occupancy status, and discharge information), and temporal factors (admission and discharge
timestamps, which support modeling of patient flow and length of stay).

The dataset is intentionally heterogeneous, containing categorical, numerical, and free-text fields, along with missing values in
attributes such as gender and admission dates. This realistic design enables a thorough evaluation of preprocessing techniques,
including normalization and imputation, to handle real-world data challenges. By combining historical information (e.g., previous
history and test records) with real-time occupancy and treatment data, the dataset provides a comprehensive foundation for
developing and evaluating reinforcement learning—based hospital occupancy prediction models.

After establishing the dataset characteristics, the following section outlines the evaluation metrics used to rigorously assess the
proposed framework.

4.2 Performance evaluation

To evaluate the effectiveness of the proposed framework, four widely used performance metrics are employed. The Mean
Absolute Percentage Error (MAPE) provides an interpretable error rate expressed in percentage terms, enabling consistent
comparison across heterogeneous hospital datasets. The Coefficient of Determination (R?) measures how well the model’s
predictions explain the variance in actual occupancy values; values close to 1 indicate strong predictive capability. The Mean
Bias Error (MBE) identifies systematic biases by quantifying whether the model consistently overestimates or underestimates
occupancy levels. Finally, the Pearson Correlation Coefficient (p) assesses the strength and direction of the linear relationship
between predicted and actual values, with a value of +1 indicating a perfect positive correlation.

100 & p; - pj|
MAPE =
- ,Z_; > (12)
Z(plj - pj)z
R?=1--— (13)
Z;(plj _ﬁj)z
=
MBE(%) = —=>"(p! — p,) (14)
m-p 43
Z(q,— —d)(p} - pj) 15)

. \/Z(qj —q)ZZ(pj - ﬁj)z

These metrics collectively address accuracy, bias, reliability, and correlation strength, offering a comprehensive evaluation
framework for occupancy forecasting.

4.3 EXPERIMENTAL RESULTS AND EVALUATION

This section presents a comprehensive analysis of the proposed DDPG-based hospital bed allocation framework, evaluated
against baseline models including a supervised neural network, a rule-based scheduling system, and a Deep Q-Network (DQN).
The experiments were conducted using a real-world multispecialty hospital dataset comprising 50,000 anonymized patient
records, as described earlier. The evaluation focuses on four key aspects: validation accuracy, reward progression, operational
performance (bed utilization and wait time), and comparative performance across models. The cloud infrastructure was used
solely for secure data storage and retrieval, ensuring scalability and interoperability across departments.We first analyze the
model’s learning dynamics through validation accuracy over training epochs.

A. Validation Accuracy
Validation accuracy was monitored over 50 training epochs to assess the learning efficiency of the proposed DDPG model
compared to the baseline DQN.The DDPG model demonstrated a steeper accuracy gain and converged at approximately 80.5%,
whereas the DQN plateaued around 70%, indicating that the DDPG agent learns more efficient allocation strategies through
continuous interaction and feedback. Figure 2 illustrates the validation accuracy trends over training epochs for both the proposed
DDPG-based model and the baseline DQN. The DDPG model shows faster convergence and achieves a higher final accuracy,
demonstrating its superior learning capability
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Validation Accuracy Comparison: DDPG vs DQN

B85
DDPG-Based Made|
== Baseline DON Model

Validation Accuracy (%)
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50

0 10 20 30 40 50
Epochs

Fig. 2. Validation Accuracy over Epochs for DDPG-Based Model vs Baseline DQN.

B. Reward Progression Over Training

The cumulative reward per episode was tracked throughout training to examine the agent’s policy improvement dynamics. As
shown in Figure3, the reward curve exhibited a steady upward trend, stabilizing after ~300 episodes. This indicates that the agent
progressively learns optimal allocation policies, effectively minimizing patient wait times while maximizing resource utilization.

Reward Progression per Episode for DDPG Agent

200

180 [

160 -

140 |

Cumulative Reward

120

100 | —— DDPG Reward Progression

0 100 200 300 400 500
Episodes

Fig. 3. Cumulative Reward Progression of the DDPG Agent over 500 Episodes.

C. Comparative Performance Across Models
The performance of the proposed model was compared against baseline methods using multiple metrics, including accuracy, bed
utilization, and average wait time. Table 2 summarizes the results.

Table 2. Performance Comparison of DDPG with Baseline Models

Model Final Accuracy (%) Avg. Bed Utilization | Avg. Wait Time (min)
(%)
DDPG-Based 80.5 87.2 12.3
Supervised NN 72.0 72.6 18.5
DQN (Baseline RL) 52.0 60.4 22.9
Rule-Based 65.3 65.1 21.7
— Performance Comparison of Models (Dynamic Variation)
Accuracy
Emm Precision
EEm Recall
80
__ 60+
A 40 4
20

aseW\ne "V

oovc-Based
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o sed
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Fig. 4. Performance comparison of models under dynamic variation using Accuracy, Precision, and Recall metrics.
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Asiillustrated in Fig. 4, the proposed DDPG-based framework exhibits superior performance in terms of accuracy (81%), precision
(82%), and recall (79%) compared to supervised neural networks, DQN, and rule-based models. This result confirms that the
reinforcement learning approach effectively adapts to dynamic variations in hospital occupancy scenarios, providing more
consistent and reliable allocation decisions.

The DDPG framework achieved a 15-20% improvement in average bed utilization and a 30-40% reduction in average patient
wait time relative to the other approaches. This demonstrates its practical effectiveness in optimizing hospital resource
distribution.Beyond predictive accuracy, we also evaluate the model’s storage efficiency under real-time cloud integration.

D. Ablation Study

An ablation study was conducted to analyze the contribution of experience replay and soft target updates.
. Without experience replay, the model exhibited unstable learning and failed to converge (accuracy < 60%).
. Without soft target updates, the training became volatile, converging slowly at ~68% accuracy.

The full DDPG configuration achieved 80.5% accuracy, confirming the importance of both components for stable learning.

E. Runtime and Scalability Evaluation

To assess runtime efficiency, the training time per episode was compared with the baseline DQN model.To further assess
computational efficiency, the average training time per episode was compared between the proposed DDPG model and the
baseline DQN. The results are summarized in Table 3.

Table 3. Training Runtime Comparison

Model Avg. Training Time per Total Episodes Convergence Epoch
Episode (s)

DDPG-Based 0.92 500 200

DON (Baseline) 0.58 500 300

Although the DDPG model required slightly higher per-episode compute time, it converged faster and exhibited improved
stability and sample efficiency, making it more suitable for real-time decision-support systems.To further assess operational
impact, we examine how effectively the model utilizes local hospital capacity.

F. Local Space Occupancy Analysis:

In addition to accuracy and wait time, we also evaluated Local Space Occupancy, which measures how effectively hospital
resources are utilized without relying on external facilities. As shown in Figure5 and Table 4, the proposed DDPG-based
framework consistently achieved an average occupancy of ~0.6, outperforming A2C (~0.5), PPO (~0.45), AT-MOPSO (~0.4),
and NSGA3 (~0.38). This demonstrates the ability of the proposed model to make optimal allocation decisions, reducing
dependence on external transfers and improving adaptability under fluctuating hospital conditions.

1.4 i
Proposed A2C
- 1.2 F — AT-MOPSO PPO | |
2 NSGA3
o]
=2 17
=
S
o 0.8 1
=1
o= 0.6 ———————eo——————
N _
= 0.4 ==
< r
=
A 0_2 . -
0 L L L L
0 50 100 150 200

Iteration/Episode
Fig 5: Analysis of local space occupancy of proposed and existing models

Table 4 summarizes the local space occupancy achieved by the proposed model compared to existing methods.

Table 4: Local space occupancy of the proposed and existing models

Local Space Occupancy
Iteration Proposed 'I?\/I-I(—)-PSO NSGA3 A2C PPO
0 0.61 0.186 0.186 | 0.515 0.455
50 0.613 0.345 0.377 | 0.512 0.469
100 0.62 0.34 0.388 | 0.505 0.469
150 0.62 0.34 0.388 | 0.499 0.47
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G. Cloud Storage Efficiency (Supporting Evaluation)

Although cloud computing is not the primary focus of this framework, a lightweight cloud layer was used to handle data storage
and retrieval across hospital departments. Figure 6 and Table 5 summarize the percentage storage reduction achieved by various
models. Among the compared methods, AT-MOPSO achieved the highest raw storage reduction (~60%), followed by NSGA3
(~50%) and PPO (~48%). The proposed DDPG-based model achieved a moderate reduction of ~42%, which is acceptable given
that its primary strength lies in dynamic occupancy allocation and secure, role-based access control through CP-ABE.
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Fig. 6. Analysis of percentage storage reduction in various models

This trade-off demonstrates that the proposed framework maintains reasonable storage efficiency while prioritizing operational
intelligence and data security, making it suitable for practical deployment in healthcare systems.

Table 5: Percentage storage reduction of various models

Percentage storage reduction
Technique Values
A2C 42.9
PPO 47.8
NSGA3 50.1
AT-MOPSO 59.5
Proposed 41.2

4.4 Performance evaluation using various dataset sizes

Figure 7 illustrates the way the number of records in the dataset and the suggested model's prediction accuracy (%) relate to one
another. A steady rising trend can be seen when the accuracy values are presented for dataset sizes ranging from 100,000 to
500,000 records. To be more precise, the model's accuracy is 51% with 100,000 records and gradually rises to 67% with 500,000
records from the dataset.

Dataset against Accuracy

Accuracy(%)

100000 200000 300000 400000 500000
w——Seriesl 51 56 59 62 67

Dataset Size(No of Records)

——Seriesl

Fig.7. Accuracy of the proposed model by varying data size

This pattern demonstrates how well the suggested reinforcement learning-based architecture scales and learns. The steady growth
in accuracy attests to the model's ability to use the larger amount of data to improve generalization and optimize its resource
allocation techniques. The outcomes highlight the importance of large-scale, high-quality data to improve the model's capacity to
represent intricate patient flow dynamics and hospital occupancy patterns. As the suggested model is incorporated into real-time,
cloud-based healthcare systems, the increasing accuracy further supports its durability.
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The assessment of the suggested reinforcement learning-based hospital occupancy allocation model over five lakh (5L) and one
lakh (1L) records is summarized in Table 6. Accuracy, precision, recall and F1 score are the main measures used to evaluate the
performance. The model shows steady gains across all performance metrics as the dataset size grows. The precision of accurately
identifying positive cases increases from 68.3% at 1L to 78.4% at 5L. Recall, which measures the sensitivity of the model,
increases from 67.9% to 78.4%, indicating improved coverage of pertinent cases. Stronger overall performance is shown by the
F1 Score, which rises from 66.4% to 77.2% and strikes a balance between precision and recall. The model's capacity to generalize
better with bigger datasets is confirmed by the notable steady improvement in accuracy from 68.6% to 80%.

Table 6: Performance evaluation using various dataset sizes

Precision
Dataset Size | (%) Recall (%) | F1 Score (%) | Accuracy (%)
1L 68.3 67.9 66.4 68.6
2L 67.9 69 68.7 69.9
3L 71.2 73.2 70.6 73.8
4L 75.8 76.3 78.6 79.2
5L 78.4 78.4 77.2 80

Confusion Matrix
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20000
Positive ZAWEIS 427 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0
- 10000
0 0 0 0 0 0 0 0
- 7500
0 0 0 0 0 0 0 0
- 5000
0 0 0 0 0 0 0 0
- 2500
0 0 0 0 0 0 0 0
-0
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itive -

siti

Fig. 8. Confusion matrix of the DDPG-based model showing classification performance for positive (occupied) and
negative (available) states.

The confusion matrix in Fig. 8 provides a detailed breakdown of classification performance. The DDPG model exhibits strong
diagonal dominance, indicating effective separation between occupied and available states. Although minor false positives and
false negatives are observed, the overall high diagonal values confirm that the model generalizes well and maintains stability
even when evaluated on large and imbalanced hospital datasets.

4.5 Discussion

In summary, the proposed framework presents a robust and secure solution for addressing the challenges of dynamic hospital
occupancy management by integrating Deep Deterministic Policy Gradient (DDPG) reinforcement learning with Attribute-Based
Encryption (ABE). By combining clinically informed patient batching through Mahalanobis distance, real-time data handling via
a lightweight cloud layer, and fine-grained access control, the system ensures both efficient resource allocation and strong data
privacy within multispecialty hospital networks.
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The experimental results demonstrate the scalability, learning efficiency, and resilience of the proposed model across multiple
evaluation metrics. As the dataset size increases, the model shows an improved ability to capture complex hospital resource
allocation patterns, resulting in more accurate, reliable, and efficient decision-making. This indicates that the framework is well-
suited for large-scale, distributed healthcare environments, where adaptability and privacy protection are critical. To evaluate the
overall computational efficiency, the runtime of the proposed model was compared with existing approaches. The results are
summarized in Table 7.

Table 7: Run time analysis of the proposed and existing models

Technique Runtime (in second)
PPO 46.7
A2C 53.6
AT-MOPSO 384.2
NSGA3 474.1
Proposed 41.3

In terms of runtime performance, the proposed model achieved the lowest runtime of 41.3 seconds, outperforming other existing
methods. This efficiency further supports its potential for real-time deployment in operational hospital settings. The discussion
highlights the practical advantages and computational efficiency of the framework, leading to the overall conclusions summarized
below.

CONCLUSION

This study presents a secure and adaptive framework for managing hospital bed occupancy using Deep Deterministic Policy
Gradient (DDPG) reinforcement learning integrated with Ciphertext-Policy Attribute-Based Encryption (CP-ABE) and cloud
deployment. The proposed system outperforms traditional rule-based and machine learning approaches by achieving efficient bed
utilization (up to 87.2%), a 12.3-minute reduction in average patient wait time, and faster convergence with a runtime of 41.3
seconds. It also demonstrates cost efficiency in cloud storage (=0.1) and maintains high normalized rewards (0.78-0.83),
reflecting strong learning stability. The integration of CP-ABE ensures fine-grained data access control, enhancing the overall
security of hospital information systems. In future work, larger and more heterogeneous datasets will be used to further validate
and refine the model’s scalability and adaptability in real-world healthcare environments.
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