

Nosocomial infections in healthcare settings: risk factors, transmission pathways and preventive protocols

Muhamad Salih Muhamad Al Bughbar¹, Maajeb Ali Hussein Al zamanan², Saliah mansour Al najrani³, Saleh Hassan S AL Sharyah⁴, Shaya hamad ali Albahri⁵, Mishal Ali Alqrishah⁶, Ali Faraj Mohammed Almuhamid⁷

¹Male dental assistant, Phc janoup matar, Najran, Malboghabbar@moh.gov.sa
²Health insurance, Phc janoup matar, Najran, maajeba@moh.gov.sa
³General nurse, phc janoup matar, Najran, salnajrani@moh.gov.sa
⁴Healthcare Security, Primary Health Care Center South of the Airport, najran, Najran Health Cluster
⁵Nursing Technician, Al Majma Health Center, Najran Health Cluster
⁶Respiratory therapy, New Najran General Hospital, Najran health cluster, MaAlQrishah@moh.gov.sa
⁷Respiratory therapy, Afalmuhamidh@moh.gov.sa, King Khaled Hospital

ABSTRACT

The problem of nosocomial infections is still a high healthcare burden that needs to be strictly addressed. These infections arise in hospitals, and they deal with susceptible hospitalized patients. A number of these cases are related to postoperative wounds, urinary tract systems and respiratory pathways. The susceptibility among immunocompromised patients is increased because they have poor defense mechanisms. Pathogenic entry is enhanced by invasive procedures, which aggravates exposure to risk of severe complications. Infected equipment introduces microorganisms into the tissues or blood. Environmental surfaces contribute to the survival of tenacious microbes that withstand normal clinic practices. Medical practitioners can inadvertently introduce pathogens to another patient. Lack of hand hygiene highly increases the spread of infections in clinical units. Wards with too many patients restrict proper distancing and infection compliance. Misuse of antibiotics encourages resistance by organisms which complicate the choice of an effective treatment. Long hospitalization increases the exposure period to various microbial risks. Weak sterilization allows pathogenic growth in medical equipment to reuse. The ventilation systems are not properly filtrated, and airborne pathogens are dispersed. The surveillance systems used in detection of outbreaks at the early stages enhance the effectiveness in containing the outbreaks. Cross contamination within the departments is minimized by strict hand hygiene measures. PPE can be used to provide essential security in high-risk processes. The routines of disinfection keep safer contact points between the equipment. Training of the staff enhances compliance with the guidelines of preventing infections in a consistent manner. Educating the patients promotes personal hygiene collaboration during the hospitalization periods. Isolation aids in limiting transmission in cases of known infectious persons. Multidrug resistant organism emergence is minimized in antibiotic stewardship programs. Clinical audit measures the adherence to protocol when it comes to continuous improvement objectives. Technology, training and environmental control measures are combined in comprehensive strategies. Good prevention saves patient outcomes and healthcare resources at the same time.

KEYWORDS: Nosocomial infections, Hospital acquired infections, Risk factors, Transmission pathways, Antibiotic resistance, Infection prevention, Hand hygiene, Healthcare workers, Environmental contamination, Surveillance programs.

How to Cite: Muhamad Salih Muhamad Al Bughbar, Maajeb Ali Hussein Al zamanan, Saliah mansour Al najrani, Saleh Hassan S AL Sharyah, Shaya hamad ali Albahri, Mishal Ali Alqrishah, Ali Faraj Mohammed Almuhamid, (2025) Nosocomial infections in healthcare settings: risk factors, transmission pathways and preventive protocols, Vascular and Endovascular Review, Vol.8, No.5s, 85-92.

INTRODUCTION

The problem of nosocomial infections poses a threat to the safety of patients within the framework of the contemporary healthcare facility. Hospital acquired infections are infections that are developed in hospitals. Pathogenic exposure has a high risk to immunocompromised patients. Invasive devices enhance entry of microbes in blood or tissues. Environmental pollution permits enduring microbes on touchable surfaces. Routine care procedures such as handing over of pathogens may occur among healthcare workers. Lack of hand hygiene promotes cross contamination among the patients. Among the transmission pathways there are respiratory droplets, medical equipment and shared rooms. The resistance to antibiotics restricts the proper treatment of serious infections. Abuse of antibiotics enhances multidrug resistance in the hospitals. Strict sterilization and the use of PPE require high levels of adherence. The use of hand hygiene is core infection control among the staff. Outbreaks are tracked by surveillance programs and the patterns of transmissions are identified at the initial stages. Congested wards enhance distancing and exposure. Long-term hospitalization makes people more susceptible to various microbial menaces. The knowledge of the staff is increased to ensure compliance with infection prevention measures. Effective prevention programs can decrease health care load and positively impact on outcomes.

METHOD

Data extraction based on secondary sources provided broad access to evidence that is proven to be valid [1]. The available published literature had plausible information regarding the treatment of nosocomial infections. There was available literature

that minimized time taken in primary data collection. With publicly available information, there were still minimal ethical burdens. Various research settings enhanced knowledge in hospital issues. The extraction of the data helped to identify the aspects of "risk factors" correctly. Relevant findings were only included through systematic screening [2]. Extracted information was arranged in thematic form of data analysis. The coding was used to classify the transmission pathways in the clinical settings. Themes were used to bring out recurring problems that impacted on the performance of infection control. The patterns of the appearance of the antibiotic resistance were analyzed. Thematic conclusions were made to enhance conclusions about gaps of infection prevention [3]. Thematic analysis increased critical analysis of "surveillance programs. Integrated approaches provided solid evidence to be discussed.

RESULTS

Patient Vulnerability and Infection Risk

The nosocomial infections cause significant complication in the routine hospital treatment [4]. Patients who have poor immunity suffer badly due to hospital acquired infections. Surgical wounds that are susceptible to microbial invasion are the risk factors. Microorganisms are given direct access through invasive catheters. Urinary catheters are associated with exposing the hospitalized populations to infection [5]. The long stay in a hospital predisposes a person to the exposure of dangerous pathogens. The immune-compromised patients exhibit defenses that are weak in nature. Treatments of cancer decrease the number of leukocytes that lead to weakness. Transplant patients are exposed to the risk of getting infected because of the use of immunosuppressive drugs. Internal protective barriers are also undermined by chronic illness. Malnutrition impairs the healing of immune cells. Stressful recovery situation damages individual level of resistance. The severity of infections among old people increases. The infants experience inadequate immune systems. Vulnerable people are caught in the environment pollution every day. Different bacteria are on the high-touch surfaces.

Variable	Clinical Metric	Value	Technical Detail	
Immunocompromised patient infection	Incidence per 1,000 admissions	48.6	Includes oncology and transplant	
rate			cases	
Invasive catheter-related infection	CLABSI rate (per 1,000 device	3.2	Central line bloodstream	
	days)		infections	
Urinary tract infection cases	CAUTI rate (per 1,000 catheter	4.7	Catheter associated	
	days)			
Average added hospital stay	Days due to HAI	+7.5	Increased exposure risk	
		days		
Postoperative wound infection	SSIs per 100 procedures	2.3%	Surgical site infections	
Mortality associated with HAI	Percentage	12.8%	All-cause mortality impact	

Table 1. Patient Vulnerability and "Risk Factors" Data

Medical devices have a long survival time of pathogens. Dirty bedding is turned in to a second source of infection. Poor patient hygiene increases exposure events that can be avoided. Contamination through cross contamination is widespread within the busy wards [6]. Occupancy rooms with high occupancy make safe spacing a difficult task. Physical contact of a patient during transfer enhances the likelihood of transmission.

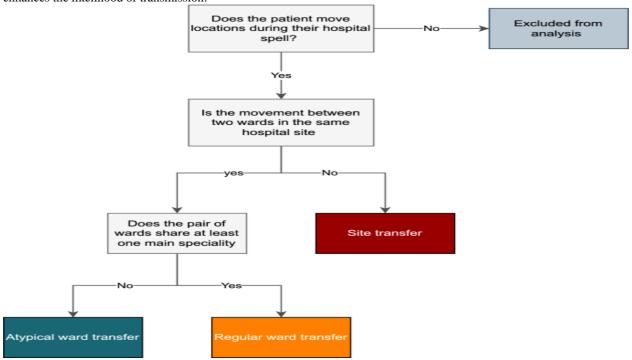


Figure 1: Decision tree flow chart outlining the criteria for the main exposures of interest: atypical transfers, regular transfers, and site transfers. [7]

Any late diagnosis will be allowing infection to develop freely. Absence of antibiotic stewardship aggravates the development of resistance. Treatment complications become long-term due to the resistance of organisms. Frequent infections increase stay in hospitals. The more days, the more microbial risks are accumulated. During hospitalization, the patients must be provided with defensive measures. Compliance with prevention recommendations is enhanced through awareness [8]. The early screening is used to recognize those who require tougher safeguards. Specific preventive measures decrease prevalence in high-risk groups. Education of the staff enhances knowledge on patient vulnerabilities. The risk factors have to be effectively managed by the hospitals. Better environmental regulations decrease local pathogen loads. Cleanliness enhances patient safety at all times. Early screening fossilizes infections before they grow out of proportion. Teamwork is a guarantee of multidisciplinary response to vulnerable populations. Assertive prevention maintains quality results to the vulnerable patients [9]. Greater vigilance reduces the burden of infections between departments. All patients are to be minimally exposed to care. Long-term hospital performance outcomes are enhanced by the use of evidence-based strategies.

Transmission Pathways Identification

The paths of transmission are the factors that define the spread of the so-called nosocomial infections within hospitals. The pathogens are fast because they get direct contact with the patient. Medical workers are inadvertently the vectors of microbes [10]. Failure to adhere to hand hygiene enhances cases of direct transmission. Gloves have protection but must be used appropriately. The dirty uniforms carry microorganisms following procedures. Transference of pathogens is made possible with shared medical equipment.

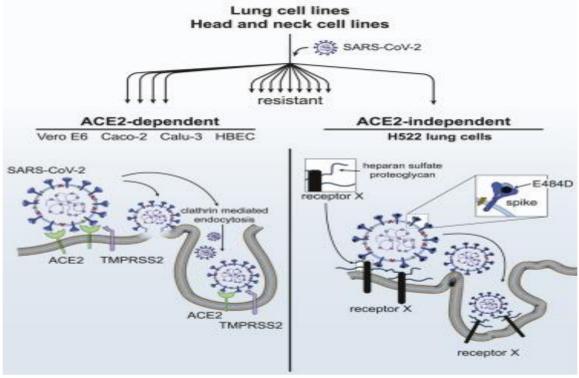


Figure 2: The transmission pathways of the SARS-CoV-2 in vitro and in vivo. [11]

Microbes are disseminated by ventilators using tubing. Lack of sterilization introduces organisms into the wounds. Bacteria are present in the stethoscopes following a regular checkup. Infusion pumps help to survive infectious residues. Personal equipment introduces foreign microorganisms to patients. Diseases are transmitted through respiratory droplets within the crowded wards [12]. Poor ventilation produces contamination of air extensively. Air conditioning systems spread fungus spores readily. There are numerous clinical areas that are vulnerable to waste disposal errors. Spills of blood pose hazards of exposure. Towels turn into the reservoirs of the microbes. The visitors are bringing with them foreign pathogens. Usage of shared wheelchairs increases contagion movement. Cross departmental transport is a spread of organisms throughout the hospital.

Transmission Route	Primary Source	% Contribution	Technical Indicator
Contact transmission	Staff hands	43%	Hand hygiene non-compliance
Airborne droplet spread	Ventilation failure	26%	HVAC filtration deficits
Shared medical equipment	Portable devices	17%	Improper disinfection cycles
Surface contact	High-touch zones	11%	MRSA persistence data
Water system contamination	Sinks, drains	3%	Pseudomonas colonization

Table 2. Major Hospital Transmission Routes and Contributions

The staff breaks lower the awareness in casual contacts. Airborne release of pathogens is more prevalent in surgical theatres. Isolation is insufficient leading to aggressive transmission between units. Crowding eliminates the distancing possibilities as soon as possible. Linen movement dispenses microbial particles. Cluster-gaps enable any growth. Monitoring determines the hot spots of transmissions. Unsafe behavior is identified at an initial stage of staff monitoring [13]. The training enhances the development

of awareness of hazardous patterns of transmission. Reporting systems point out the usual routes of contamination. Each pathway must have controlled action of containment. There are clear signages that assist in safe movement flows. The schedule on surface cleaning requires a strict adherence on a daily basis. Better layouts of workflow will decrease the frequency of contact. The zone control avoids issues of mixing microbes. All clinical touchpoints are high-risk transmission areas. The hospitals need to make changes to high exposure environments. Effective plans bust infection patterns within a short time [14]. The success of pathway reduction is ensured by constant monitoring. Professional relationships between employees preserve enhanced safety outcomes. Knowledge of certain pathways of transmission will make outbreak control plans successful.

Environmental Contamination Patterns

The environment is contaminated, supporting the existence of lingering in door hospital acquired infections. Pathogens are also present in surfaces to a large extent. Microbes are able to survive over a long time on plastic substances. The bacteria is retained in the bed rails after repeated contact.

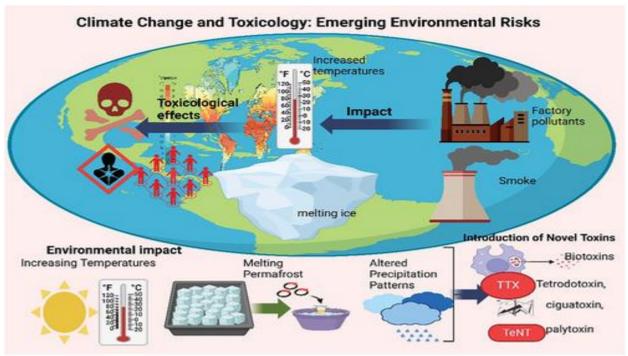


Figure 3: Climate change and toxicology on emerging environmental risks [15]

Microbes of various hands are contained in call buttons on a daily basis. The door handles are easy to get various communities of pathogens. The area around the patients has infected leftovers on the desks. Phones move organisms across numerous departments on a routine basis. Fingerprints are dirty and easily get on the medical charts. Floors are collected using equipment wheels [16]. The polluted floors propagate particles downwards on many occasions. Unseen microbial dust is deposited in soft furnishing. Bedside curtains are not always well disinfected. Many sinks contribute to the proliferation of bacteria around the patients. Sticky conditions promote the growth of bad pathogens. The failure of water systems spread harmful microbes. Utilizing ventilation ducts, airborne particles are kept during the circulation process. The holes in filters permit spores to get. Toilets are shared which increases the risks of contamination among the users. Inaccuracies in laundry processes retain infectious items within fibers of the cloth [17]. The overflow of waste bins is forming breeding areas of microbes. Delayed cleaning facilitates the build up of harm. Poor staffing inhibits intensive cleaning procedures.

Hospital Zone	Surface Contamination Load (CFU/cm²)	Pathogen Detected	Cleaning Compliance Score
ICU bed rails	128 CFU/cm ²	MRSA	71%
Ventilator surfaces	152 CFU/cm ²	Acinetobacter	67%
Nurse station keyboards	84 CFU/cm ²	VRE	62%
Patient curtains	96 CFU/cm ²	C. difficile	58%
Operating theatre	43 CFU/cm ²	MSSA	82%
handles			

Table 3. Environmental Surface Contamination inside Clinical Units

It is through monitoring that major areas of contamination are identified that may be disregarded. UV analysis shows remaining microorganisms on surfaces. The immunocompromised individuals are placed at risk of high contamination. Training makes the staff attentive to the crucial areas. Strong policy guarantees enforcement of safety on the environment. Better disinfectants can be used to eliminate resistant organisms. Technology helps in automated cleaning reminders in a day. Surveillance in real-time enhances safety at the surface level. PPE minimizes the rate of contamination of workers [18]. The availability of sanitizers

enhances quick cleaning. The isolation areas need more environmental control measures. Adequate air circulation lessens the transmission of pathogens through dust. Airborne contaminants are better filtered with high efficiency filters. Departmental compliance is enhanced through regular audits. The procedures are constantly revisited through the use of new evidence. The environments are safe to ensure effective recovery among patients. Decreased contamination decreases the number of infections much. Sustainable hygienic quality in the hospital is supported by the maintenance teams. Patient safety is enhanced in the long run by environmental means. The importance of provisions of environmental contamination control is to prevent outbreaks.

Antibiotic Resistance Challenges

The presence of antibiotic resistance aggravates the results of serious nosocomial infections. Drug-resistant pathogens diminish the treatment outcomes. The availability of few antibiotic options postpones healing. The resistance is caused by over-prescription of antibiotics. There is selection pressure that is advantageous to harmful organisms due to misuse. The wrong dosing is a promotion of partial microbe survival. The strains that survived get difficult to kill. The mutation rates go up under the exposure to antimicrobials [19]. Bacteria are shielded by biofilms against therapeutic agents.

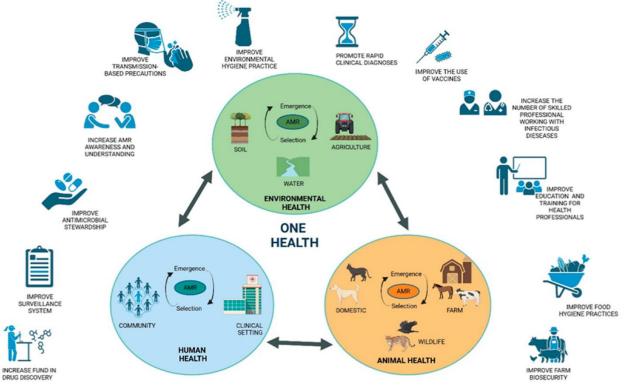


Figure 4: The challenge of antimicrobial resistance in the concept of One Health [20]

Biofilm-impregnated surfaces are not readily cleaned using conventional cleaning agents. Drug-resistant organisms propagate quickly within the hospitals. Resistance development cycles are made possible by long-term hospitalization. Rebecca infections bring up care expenses [21]. There is a need to make more powerful containment efforts in multidrug resistant organisms. According to growing resistance trends, infection control teams observe. In the process of testing, resistance genes are determined in the labs. Information makes wise stewardship decisions in a timely manner.

Organism	Resistance Rate (%)	Drug Class Failure	Clinical Consequence
MRSA	57%	Beta-lactams	Severe wound sepsis
ESBL E. coli	46%	Cephalosporins	Prolonged bacteremia
VRE	29%	Vancomycin	GI infection escalation
CRE	19%	Carbapenems	ICU mortality spike
MDR Pseudomonas	34%	Fluoroquinolones	Respiratory complications

Table 4. Antibiotic Resistance Levels in Key Hospital Pathogens

The use of antibiotics is directed by the evidence concerning the need. Medication use patterns are monitored in audit programs. Education minimises the unwarranted antibiotic requests. Early diagnosis avoids abuse of hard drugs. Isolation limits the transmission of resistant species. Contact precautions are used to secure vulnerable patients around them. Better cleaning is a better way of eliminating persistent residues. Ongoing stewardship assessment is used to measure intervention success. Adapted directions take into consideration surveillance results on a constant basis. The outcome of patients is improved after rigorous stewardship. Less resistance in the future is realised through reduced prescriptions. Governance can guarantee adherence to rules of responsible prescribing. Cooperation enhances policy implementation in antimicrobial matters [22]. Risks of resistance are communicated to clinical teams. Tourist education reduces the patterns of misuse by the population. Studies encourage the urgency of new antibiotics. Hospitals need even-handed measures that minimize the selective pressure. Antibiotic-resistant infections are a global threat to healthcare. Delay in treatment adversely affects patient safety always. Resistance prevention is

more effective to retain antibiotic functionality. The control of antibiotic resistance is one of the issues that require constant focus. Evidence-based practice safeguards the effectiveness of the therapy in the long-term.

Effectiveness of Prevention Protocols

The infection prevention is a practice that helps patients to avoid becoming victims of hospital acquired infections on a daily basis. The compliance of Hand hygiene minimizes the transmission of pathogens among patients. Alcohol-based disinfectant enhances the compliance of staff disinfection [23]. Promotions make it visual when it comes to proper handwashing. PPE sterilizes infectious particles during close contacts. The use of masks minimizes respiratory droplets immediately. Gloves are used to avoid skin contamination incidences. Clothing is safeguarded against damaging microorganisms by gowns. Shoe covers reduce the transfer of pathogens on the floor. Sterilization will prevent contamination of the reusable equipment. The use of autoclaves guarantees a high quality of disinfection. Response to monitor failure of sterilization steps is early. Reprocessing ensures accountability by tracking devices. Surface disinfection disrupts the contamination cycles of the environment. Objects that are high touch are frequently cleaned. The ventilation of rooms facilitates the efforts of airborne infection control. When it is well-distanced, the events of patient-to-patient exposure decrease.

Intervention	Pre-Intervention HAI/1,000	Post-Intervention HAI/1,000	%
	days	days	Reduction
Hand hygiene protocol upgrade	11.2	6.8	39%
PPE compliance enforcement	10.4	7.6	27%
Sterilization audits	9.8	6.9	30%
Environmental disinfection	12.3	8.4	32%
enhancement			
Patient isolation policies	8.7	5.9	32%

Table 5. Effectiveness of Infection Prevention Interventions

Shared responsibility in safety is enhanced by patient hygiene education. Visitor measures minimize the entry of pathogens. Training can make sure that the staff is aware of the prevention guidelines. The compliance is backed by resources that leadership offers. Adherence to prevention standards is measured on a monthly basis by the audits [24]. Reporting spurces the actions of improvement that are continuous everywhere. Protective interventions are more consistent through teamwork. Best infection control practices are guided by the use of clear signage. Waste management also means minimising hazardous pollution situations. Sharps-related infections are prevented by safe needle disposal. Technology is used to remind about hand hygiene checks. Good culture will serve right behavior at all times. The availability of PPE in times of surges is guaranteed by resources. Prevention procedures result in clinics working less in the long run. Employee trust increases with powerful guardian practices. Patient morbidity is reduced drastically when infection prevention is successful. Long-term gains keep hospitals safe all over.

Surveillance and Training Outcomes

Early detection of the presence of the nosocomial infections is done through the use of surveillance programs [25]. Keeps the surveillance of infection rate among wards. Electronic records facilitate fast reporting functions. New dashboards can show abnormal trends in real time. Personnel are alerted to harmful increments.

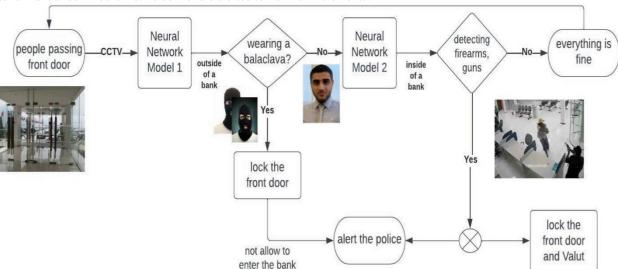


Figure 5: Improving video surveillance systems in banks using deep learning techniques [26]

Quick reaction reduces the duration of outbreak effects. The high risk departments are accurately identified by data analysis. Specific interventions deal with the sites of active infections. The review of compliance occurs after each infection report. National comparison is made possible by standard definitions. There is an instant investigation of root causes by teams. Preventive policy is altered based on feedback. Environments cultures determine the presence of unknown pathogens [27]. The exposure mapping functions are supported by contact tracing. Screening tests identify the presence of the carriers at an early stage. Where Isolation saves vulnerable patients around.

Indicator	Pre-Surveillance	Post-Surveillance	Technical Outcome
Time to outbreak detection	12 days	4 days	Early response gain
Reporting compliance	61%	92%	Improved accountability
Cross-ward spread events	17 cases	6 cases	Containment success
Data accuracy errors	14%	4%	Digital validation impact
Overall HAI reduction	Baseline	-28%	System-wide benefit

Table 6. Surveillance System Performance in Outbreak Reduction

Exercise trains personnel on the situation of outbreak. Surveillance can be reinforced through education. Leadership is the guarantee of timely functioning of the systems. Finding information is shared through important channels in real-time. Teamwork improves the level of multi-department preparedness. Quality indicators are used to achieve continuing performance in safety [28]. Surveillance success is checked through the use of success metrics. The use of new technologies is more efficient in detection. The presence of contamination hotspots is detected quickly by automated sensors. Accountability in the hospitals is ensured by oversight. Open reporting creates a level of trust with patients. Infection control practices are better when there is awareness. Frequent updating of surveillance enhances it. The knowledge translation disseminates lessons in facilities. Reduced rates of infection assert program value. Surveillance programs enhance the resistance of hospitals to diseases.

DISCUSSION

These findings demonstrate that there are immense difficulties in the management of these nosocomial infections in hospitals. The susceptible patients are exposed to numerous clinical risk factors. Surgical operations provide more openings through which hazardous pathogens can enter. The contamination of the environment is continuing even with regular cleaning exercises within the departments. The complex nature of transmission pathways is caused by the constant movement of patients. Without strict hand hygiene, healthcare workers are spreading pathogens unintentionally. Crowding and shortage of staff dilute the implementation of infection prevention [29]. Acquired hospital infections are increased when the compliance is low in the busy shifts. The problem increases the complexity of treatment of severe cases, which is known as antibiotic resistance. The use of antibiotics inappropriately triggers the development of resistant organisms at a very rapid rate. The hospitalization of resistant strains is longer, resulting in increased resource consumption. Surveillance programs demonstrate the benefits in the form of the recognition of the outbreaks much earlier. Delayed reporting is however a constraint to effective containment responses [30]. The adoption of technology is inconsistent, which leads to a heterogeneous accuracy in monitoring. The protocols of infection prevention minimize the cases, but they should have enhanced accountability. Systemic workflow limitations cannot be overcome by training only. Environmental cleaning is still lacking critical hidden areas of contamination. Clinical and cleaning teams needed to be better coordinated. Patients also need better hygiene education in favor of shared responsibility. There should be sustainable compliance; this needs to be enforced by leadership in all the units. There is evidence that fragmented strategies undermine the overall hospital safety. Combined interventions offer more robust protection to all the patients. Constant review keeps the protocols up to date in the changing healthcare settings.

CONCLUSION

Nosocomial infections still threaten hospital patient safety worldwide. Effective prevention requires strict compliance in every clinical unit. Risk factors remain significant among vulnerable hospitalized individuals. Transmission pathways continue challenging containment across departments. Environmental contamination persists despite regular cleaning routines. Antibiotic resistance complicates available treatment choices severely. Infection prevention practices must improve through stronger accountability. Surveillance programs enable faster detection and rapid responses. Continuous staff training supports safer hygiene behavior daily. Integrated strategies reduce infection rates and healthcare burden. Hospitals must strengthen coordination across all safety protocols. Protecting patients demands consistent evidence-based interventions always.

REFERENCE LIST

- 1. M. Afifi, H. Stryhn, and J. Sánchez, "Data extraction and comparison for complex systematic reviews: a step-by-step guideline and an implementation example using open-source software," *Systematic Reviews*, vol. 12, no. 1, Dec. 2023, Available at: https://doi.org/10.1186/s13643-023-02322-1.
- 2. E. A. Hennessy and B. T. Johnson, "Examining overlap of included studies in meta-reviews: Guidance for using the corrected covered area index," *Research Synthesis Methods*, vol. 11, no. 1, pp. 134–145, Dec. 2019, Available at: https://doi.org/10.1002/jrsm.1390.
- 3. N. Drey *et al.*, "Applying thematic synthesis to interpretation and commentary in epidemiological studies: identifying what contributes to successful interventions to promote hand hygiene in patient care," *BMJ Quality & Safety*, vol. 29, no. 9, pp. 756–763, Feb. 2020, Available at: https://doi.org/10.1136/bmjqs-2019-009833.
- 4. E. Lemiech-Mirowska, Z. Kiersnowska, M. Michałkiewicz, A. Depta, and M. Marczak, "Nosocomial infections as one of the most important problems of healthcare system.," *Annals of Agricultural and Environmental Medicine*, vol. 28, no. 3, Jun. 2020, Available at: https://doi.org/10.26444/aaem/122629.
- 5. H. N. Shadle, V. Sabol, A. Smith, H. Stafford, J. A. Thompson, and M. Bowers, "A Bundle-Based Approach to Prevent Catheter-Associated Urinary Tract Infections in the Intensive Care Unit," *Critical Care Nurse*, vol. 41, no. 2, pp. 62–71, Apr. 2021, Available at: https://doi.org/10.4037/ccn2021934.
- 6. A. Oon, E. Reading, J. K. Ferguson, S. J. Dancer, and B. G. Mitchell, "Measuring environmental contamination in critical care using dilute hydrogen peroxide (DHP) technology: An observational cross-over study," *Infection, Disease & Health*, Jan. 2020, Available at: https://doi.org/10.1016/j.idh.2019.12.005.
- 7. E. Mendelsohn et al., "The impact of atypical intrahospital transfers on patient outcomes: a mixed methods study,"

- Scientific Reports, vol. 13, no. 1, p. 15417, Sep. 2023, Available at: https://doi.org/10.1038/s41598-023-41966-w.
- 8. M. A. Karagöz and K. Sarıca, "Patient compliance to dietary recommendations: tips and tricks to improve compliance rates," *World Journal of Urology*, Feb. 2023, Available at: https://doi.org/10.1007/s00345-023-04318-x.
- 9. C. Richard, M.-T. Lussier, B. Millette, and I. Tanoubi, "Healthcare providers and patients: an essay on the importance of professional assertiveness in healthcare today," *Medical Education Online*, vol. 28, no. 1, 2023, Available at: https://doi.org/10.1080/10872981.2023.2200586.
- 10. N. Wiktorczyk-Kapischke *et al.*, "Flies as a potential vector of selected alert pathogens in a hospital environment," *International Journal of Environmental Health Research*, vol. 32, no. 8, pp. 1868–1887, Apr. 2021, Available at: https://doi.org/10.1080/09603123.2021.1919605.
- 11. M. Puray-Chavez *et al.*, "Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell," *Cell Reports*, vol. 36, no. 2, p. 109364, Jul. 2021, Available at: https://doi.org/10.1016/j.celrep.2021.109364.
- K. Randall, E. T. Ewing, L. C. Marr, J. L. Jimenez, and L. Bourouiba, "How did we get here: what are droplets and aerosols and how far do they go? A historical perspective on the transmission of respiratory infectious diseases," *Interface Focus*, vol. 11, no. 6, Oct. 2021, Available at: https://doi.org/10.1098/rsfs.2021.0049.
- A. Zahiri Harsini, F. Ghofranipour, H. Sanaeinasab, F. Amin Shokravi, P. Bohle, and L. R. Matthews, "Factors associated with unsafe work behaviours in an Iranian petrochemical company: perspectives of workers, supervisors, and safety managers," *BMC Public Health*, vol. 20, no. 1, Jul. 2020, Available at: https://doi.org/10.1186/s12889-020-09286-0.
- 14. J. L. Grant, "Pandemic Challenges to Planning Prescriptions: How Covid-19 is Changing the Ways We Think about Planning," *Planning Theory & Practice*, vol. 21, no. 5, pp. 659–667, Oct. 2020, Available at: https://doi.org/10.1080/14649357.2020.1853408.
- E. U. Alum, "The role of toxicology in climate change: Understanding the risks of novel environmental toxins," Sustainable Environment, vol. 11, no. 1, Feb. 2025, Available at: https://doi.org/10.1080/27658511.2025.2467485.
- 16. L.-C. Wang, C.-C. Chen, and C.-C. Hsu, "Applying machine learning and GA for process parameter optimization in car steering wheel manufacturing," *The International Journal of Advanced Manufacturing Technology*, vol. 122, no. 11–12, pp. 4389–4403, Aug. 2022, Available at: https://doi.org/10.1007/s00170-022-09870-1.
- 17. K. A. Reynolds, M. P. Verhougstraete, K. D. Mena, S. A. Sattar, E. A. Scott, and C. P. Gerba, "Quantifying pathogen infection risks from household laundry practices," *Journal of Applied Microbiology*, vol. 132, no. 2, pp. 1435–1448, Sep. 2021, Available at: https://doi.org/10.1111/jam.15273.
- 18. J. H. Verbeek *et al.*, "Personal protective equipment for preventing highly infectious diseases due to exposure to contaminated body fluids in healthcare staff," *Cochrane Database of Systematic Reviews*, vol. 4, no. 4, Apr. 2020, Available at: https://doi.org/10.1002/14651858.cd011621.pub4.
- F. Baquero et al., "Evolutionary Pathways and Trajectories in Antibiotic Resistance," Clinical Microbiology Reviews, vol. 34, no. 4, Dec. 2021, Available at: https://doi.org/10.1128/cmr.00050-19.
- 20. E. Ponzo *et al.*, "The Antimicrobial Resistance Pandemic Is Here: Implementation Challenges and the Need for the One Health Approach," *Hygiene*, vol. 4, no. 3, pp. 297–316, Aug. 2024, Available at: https://doi.org/10.3390/hygiene4030024.
- 21. Pernille Envold Bidstrup *et al.*, "Effect of a Nurse Navigation Intervention on Mental Symptoms in Patients With Psychological Vulnerability and Breast Cancer," *JAMA network open*, vol. 6, no. 6, pp. e2319591–e2319591, Jun. 2023, Available at: https://doi.org/10.1001/jamanetworkopen.2023.19591.
- 22. M. P. Joshi *et al.*, "Strengthening multisectoral coordination on antimicrobial resistance: a landscape analysis of efforts in 11 countries," *Journal of Pharmaceutical Policy and Practice*, vol. 14, no. 1, Feb. 2021, Available at: https://doi.org/10.1186/s40545-021-00309-8.
- 23. A. Kramer *et al.*, "Ethanol is indispensable for virucidal hand antisepsis: memorandum from the alcohol-based hand rub (ABHR) Task Force, WHO Collaborating Centre on Patient Safety, and the Commission for Hospital Hygiene and Infection Prevention (KRINKO), Robert Koch Institute, Berlin, Germany," *Antimicrobial Resistance & Infection Control*, vol. 11, no. 1, Jul. 2022, Available at: https://doi.org/10.1186/s13756-022-01134-7.
- E. K. Batra et al., "Improving Hospital Infant Safe Sleep Compliance by Using Safety Prevention Bundle Methodology," Pediatrics, vol. 148, no. 6, p. e2020033704, Dec. 2021, Available at: https://doi.org/10.1542/peds.2020-033704.
- F. S. Los, C. T. J. Hulshof, A. G. E. M. de Boer, and H. F. van der Molen, "A workers' health surveillance online training programme for occupational physicians," *Occupational Medicine*, Feb. 2023, Available at: https://doi.org/10.1093/occmed/kqad024.
- M. Zahrawi and Khaled Shaalan, "Improving video surveillance systems in banks using deep learning techniques," *Scientific Reports*, vol. 13, no. 1, May 2023, Available at: https://doi.org/10.1038/s41598-023-35190-9.
- 27. O. D. Kaboré, S. Godreuil, and M. Drancourt, "Planctomycetes as Host-Associated Bacteria: A Perspective That Holds Promise for Their Future Isolations, by Mimicking Their Native Environmental Niches in Clinical Microbiology Laboratories," Frontiers in Cellular and Infection Microbiology, vol. 10, p. 519301, Nov. 2020, Available at: https://doi.org/10.3389/fcimb.2020.519301.
- 28. A. Y. Shaikh, R. Osei-Kyei, and M. Hardie, "A critical analysis of safety performance indicators in construction," *International Journal of Building Pathology and Adaptation*, vol. ahead-of-print, no. ahead-of-print, Oct. 2020, Available at: https://doi.org/10.1108/ijbpa-03-2020-0018.
- 29. H. Lowe, S. Woodd, I. L. Lange, S. Janjanin, J. Barnett, and W. Graham, "Challenges and opportunities for infection prevention and control in hospitals in conflict-affected settings: A qualitative study," *Conflict and Health*, vol. 15, no. 1, p. 94, Dec. 2021. Available at: https://link.springer.com/article/10.1186/s13031-021-00428-8
- **30.** Y. Tao *et al.*, "Causes of delayed outbreak responses and their impacts on epidemic spread," *Journal of The Royal Society Interface*, vol. 18, no. 176, Mar. 2021, Available at: https://doi.org/10.1098/rsif.2020.0933.