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ABSTRACT 

Background: Echocardiography is the cornerstone of cardiac evaluation in pediatric critical care, yet its accuracy depends heavily 

on operator expertise. Artificial intelligence (AI) and machine learning (ML) have emerged as transformative tools in 

cardiovascular imaging, capable of automating image acquisition, segmentation, and interpretation. Despite rapid progress in 

adult cardiology, their integration into pediatric echocardiography remains underexplored. 

Objective: To systematically synthesize evidence on the application of AI in echocardiographic decision-making for pediatric 

patients with congenital or critical heart disease, emphasizing diagnostic accuracy, workflow efficiency, and clinical translation. 

Methods: This review followed PRISMA 2020 guidelines (PROSPERO: CRD420251165361). Comprehensive searches were 

conducted across PubMed, Embase, IEEE Xplore, Web of Science, Scopus, and Cochrane databases (2010–October 2025). 

Eligible studies applied AI/ML algorithms to pediatric echocardiographic image acquisition, lesion detection, or functional 

quantification. Data were extracted on model type, task, performance metrics, and clinical integration. Quality assessment used 

QUADAS-2 and PROBAST tools. 

Results: Twenty-six studies met inclusion criteria. AI demonstrated expert-level performance in view classification, ejection 

fraction estimation, and congenital lesion detection, reducing interobserver variability and analysis time. Integrative pipelines and 

real-time guidance improved acquisition consistency and enabled bedside deployment. However, most studies were single-center 

with limited external validation. 

Conclusion: AI-driven echocardiography enhances diagnostic precision and workflow efficiency in pediatric critical cardiology 

but requires multicenter validation, ethical governance, and interoperability frameworks for clinical adoption. 
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INTRODUCTION 
Congenital and critical heart diseases remain the leading causes of childhood morbidity and mortality worldwide. The global birth 

prevalence of congenital heart disease (CHD) is commonly cited at roughly 8–12 per 1,000 live births, with substantial regional 

variation and a persistent burden in low- and middle-income countries (Xu et al., 2025). Despite advances in fetal screening, 

perioperative care, and intensive care, CHD and acute pediatric cardiac conditions continue to account for significant mortality 

and years lived with disability; in 2017 alone, an estimated quarter of a million deaths were attributed to CHD (Meng et al., 2024). 

Echocardiography is the cornerstone of diagnosis, hemodynamic assessment, and longitudinal monitoring across neonatal, infant, 

and pediatric critical care pathways because it is portable, radiation-free, and repeatedly deployable at the bedside (Shokr et al., 

2023; Y. Singh, 2017).  

 

Yet, the strengths of echocardiography are tempered by well-recognized limitations that are amplified in high-acuity settings. 

Image acquisition and interpretation are highly operator-dependent; acoustic windows may be suboptimal in ventilated or post-

operative patients; and the time-sensitive, distraction-laden environment of pediatric intensive care heightens the risk of 

diagnostic subjectivity (Grotberg et al., 2024). Inter-observer and intra-observer variability in standard pediatric measurements—

including ventricular dimensions, function indices, and myocardial deformation—can be clinically meaningful, and variability 

across vendors further complicates serial assessment and multicenter comparisons (Thompson et al., 2021). Even with 

contemporary guidance that codifies protocols and quality standards, practice heterogeneity persists and can delay or distort 

decision-making when minutes matter (Bretthauer & Kalager, 2018) 

 

Against this backdrop, artificial intelligence (AI) and machine learning (ML) have emerged as powerful tools for medical 

imaging—learning complex, high-dimensional patterns from pixels and structured data to augment accuracy, speed, and 

consistency (Obuchowicz et al., 2025). In adult cardiology and echocardiography, AI systems already automate view 

classification, perform chamber segmentation, estimate left ventricular ejection fraction, and flag measurement outliers, while 

enabling triage and decision support in near real time (“AI in Echocardiography: State-of-the-Art Automated Measurement 
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Techniques and Clinical Applications,” 2025; Olaisen et al., 2024). These applications reduce manual variability, standardize 

workflows, and allow clinicians to focus attention on interpretation and intervention rather than repetitive measurement tasks 

(Shamszare & Choudhury, 2023).  

 

Pediatric applications are advancing quickly but remain comparatively nascent. In the prenatal domain, deep-learning ensembles 

have achieved expert-level detection of complex CHD from fetal ultrasound views, and external validations continue to probe 

generalizability across centers (Arnaout et al., 2021). Emerging systems assist fetal anomaly scanning with real-time quality 

assessment and anomaly flagging, though performance varies for small or subtle structures (Yousefpour Shahrivar et al., 2023). 

Beyond the fetus, early pediatric echocardiography studies report progress in view classification, segmentation, and CHD 

recognition on transthoracic images and cine loops (Ge, 2013; Lopez et al., 2024). Parallel work in pediatric cardiac critical care 

leverages ML models that integrate perioperative and echocardiographic parameters to predict adverse postoperative outcomes, 

survival, and longitudinal risks after congenital heart surgery—often outperforming traditional clinical scores, albeit with caveats 

around validation (Tong et al., 2024; Zürn et al., 2023). Collectively, these efforts sketch a trajectory from image acquisition 

assistance to automated quantification and risk prediction that could meaningfully compress time-to-diagnosis and align care with 

physiological trajectories in the pediatric ICU (Allam et al., 2021; Trujillo Rivera et al., 2021).  

 

However, critical gaps impede translation from promising prototypes to routine, high-stakes use. Pediatric cardiology faces 

structurally small, heterogeneous datasets spanning diverse anatomies, age-related physiology, and device contexts; domain shift 

across scanners, protocols, and institutions reduces model robustness and transportability (Tasmurzayev et al., 2025). Labeling is 

labor-intensive and requires subspecialist consensus, limiting the scale and fidelity of training data. Many published models 

remain single-center, retrospective, or narrowly task-defined, with sparse prospective, workflow-embedded trials demonstrating 

impact on clinical decisions and outcomes (Chilamkurthy et al., 2018). Interpretability and calibration—central to clinician 

trust—are variably addressed, and regulatory, ethical, and equity considerations need explicit handling to avoid widening 

disparities. Even when technical performance is strong, integration hurdles—interfacing with scanners, synchronizing with 

reporting systems, and delivering actionable outputs at the bedside—can blunt real-world utility in fast-moving critical care 

(Weiner et al., 2025).  

 

This manuscript responds to these needs by focusing on the juncture most consequential for children with life-threatening cardiac 

disease: converting images into timely, defensible interventions. Specifically, we posit that an AI-driven echocardiographic 

decision-making framework—spanning standardized acquisition support, automated quantification, and risk-aware 

recommendations—can reduce observer variability, accelerate recognition of deteriorating physiology, and provide transparent, 

context-specific guidance to the multidisciplinary pediatric critical care team. Our objectives are threefold: first, to synthesize 

and operationalize state-of-the-art AI methods for pediatric echocardiography into a clinically coherent pipeline; second, to 

evaluate its performance and generalizability against expert assessment and relevant outcomes in critical care scenarios; and third, 

to examine interpretability, workflow integration, and ethical safeguards essential for safe deployment. By centering clinical 

actionability and bedside integration, we aim to help move pediatric echocardiography from “images to interventions,” narrowing 

diagnostic delays and supporting precise, equitable care when physiological reserve is limited and decisions are time-critical.  

Method  

 

MATERIAL AND METHODS 
Search Strategy and Selection Criteria 

This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA 2020) guidelines to ensure methodological transparency, reproducibility, and scientific rigor. The review protocol was 

registered prospectively with PROSPERO (Registration ID: CRD420251165361) before data extraction commenced. 

 

To comprehensively capture the evolving applications of artificial intelligence (AI) and machine learning (ML) in pediatric 

echocardiography and critical cardiology, a systematic search was performed across PubMed/MEDLINE, Embase, Scopus, IEEE 

Xplore, Web of Science, and Cochrane Library databases. Supplementary searches were also conducted in Google Scholar and 

ClinicalTrials.gov to identify gray literature and ongoing trials. The final database search was completed on October 5, 2025. 

 

The search strategy combined controlled vocabulary (MeSH/Emtree) and free-text terms related to artificial intelligence, machine 

learning, deep learning, echocardiography, pediatric, and critical cardiology. Boolean operators and truncation were used to 

refine the query. A detailed search strategy is presented in Table 1. 

 

Table 1: Search Strategy for AI-Driven Echocardiography in Pediatric Critical Cardiology 

Database Search Terms 

PubMed/MEDLINE (“Artificial Intelligence”[Mesh] OR “Machine Learning” OR “Deep Learning” OR “Neural 

Network”) AND (“Echocardiography”[Mesh] OR “Cardiac Ultrasound” OR “Echocardiogram”) 

AND (“Pediatric”[Mesh] OR “Children” OR “Infant” OR “Neonate”) AND (“Critical Care” OR 

“Cardiac ICU” OR “Intensive Care”) 

Embase (‘artificial intelligence’/exp OR ‘machine learning’ OR ‘deep learning’) AND 

(‘echocardiography’/exp OR ‘cardiac ultrasound’) AND (‘pediatric’/exp OR ‘child’ OR ‘infant’) 

AND (‘critical care’ OR ‘intensive care’ OR ‘cardiac surgery’) 

IEEE Xplore (“Artificial Intelligence” OR “Machine Learning” OR “Deep Learning”) AND (“Echocardiography” 

OR “Cardiac Ultrasound”) AND (“Pediatric” OR “Children”) 
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Scopus / Web of 

Science 

(“Artificial Intelligence” OR “Machine Learning” OR “Deep Learning”) AND (“Echocardiography” 

OR “Cardiac Ultrasound”) AND (“Pediatric” OR “Children”) AND (“Critical Cardiology” OR 

“Cardiac Intensive Care”) 

Cochrane Library (“Artificial Intelligence” OR “Machine Learning”) AND (“Echocardiography”) AND (“Pediatric”) 

Reference lists of included studies and relevant reviews were manually screened to identify additional eligible studies not captured 

in database searches. 

 

Eligibility Criteria for Screening 

All retrieved records were imported into EndNote X20 for deduplication, followed by independent screening using Rayyan QCRI 

by two reviewers (xx. and xx.). Titles and abstracts were first screened for relevance, and potentially eligible articles underwent 

full-text evaluation. 

 

Inclusion criteria were as follows: 

1. Population: Studies involving pediatric patients (neonates to adolescents ≤18 years) with congenital or acquired cardiac 

disease or admitted to pediatric intensive/cardiac care units. 

2. Intervention: Application of AI/ML algorithms in echocardiographic image acquisition, segmentation, quantification, 

anomaly detection, or decision support. 

3. Outcomes: Diagnostic accuracy, workflow efficiency, predictive or prognostic performance, or clinical decision-

making improvement. 

4. Design: Original empirical studies, including diagnostic accuracy studies, clinical trials, cohort analyses, retrospective 

validations, or technical evaluations with clinical data. 

5. Language and Time Frame: English-language publications from January 2010 to October 2025, reflecting the modern 

deep-learning era. 

 

Exclusion criteria encompassed: (a) studies exclusively in adults, (b) animal or simulation-only work, (c) conference abstracts 

without full peer-reviewed data, (d) purely technical studies lacking echocardiographic or clinical validation, and (e) non-AI 

automation or statistical modeling approaches. 

 

Data Extraction Process 

Data extraction was performed independently by two reviewers using a standardized extraction sheet developed in Microsoft 

Excel. Any discrepancies were resolved through discussion or adjudication by a third reviewer (xx.). Extracted data included: 

 Study Characteristics: author(s), year of publication, country, and journal source. 

 Population Details: sample size, age range, cardiac diagnosis, and clinical context (e.g., CHD type, ICU status, 

postoperative period). 

 AI/ML Methodology: algorithm category (supervised, unsupervised, reinforcement, or deep learning), network 

architecture (CNN, U-Net, transformer, etc.), dataset size, data preprocessing, and ground-truth labeling method. 

 Echocardiographic Application: image acquisition support, view classification, segmentation, quantification, 

anomaly detection, or decision support. 

 Validation and Performance Metrics: cross-validation type, external validation presence, and reported metrics such 

as accuracy, sensitivity, specificity, area under the curve (AUC), mean absolute error (MAE), or dice similarity 

coefficient (DSC). 

 Clinical and Workflow Outcomes: diagnostic agreement with experts, time savings, real-time feasibility, and potential 

for integration into clinical pathways. 

 Implementation and Ethical Considerations: model interpretability, explainability methods (e.g., Grad-CAM, 

SHAP), data bias, and integration barriers. 

The final dataset was cross-verified to ensure completeness and consistency across studies before synthesis. 

 

Quality Assessment 

Quality and risk-of-bias assessment were performed using the QUADAS-2 tool, which is widely endorsed for evaluating 

diagnostic accuracy studies. QUADAS-2 assesses four domains—(1) patient selection, (2) index test, (3) reference standard, and 

(4) flow and timing—evaluating each for risk of bias and applicability. Studies with unclear or high risk in ≥2 domains were 

flagged for sensitivity analysis. 

 

For studies employing predictive or prognostic ML models without explicit diagnostic comparison, the Prediction Model Risk of 

Bias Assessment Tool (PROBAST) was additionally applied to evaluate bias in model development, analysis, and validation. 

Two reviewers conducted assessments independently; discrepancies were resolved by consensus. 

 

A summary risk-of-bias figure and tabular breakdown were generated using the ROBVIS visualization tool, ensuring transparent 

reporting of methodological rigor. 

 

Data Synthesis and Analysis 

Given the heterogeneity of AI architectures, imaging modalities, and clinical outcomes, meta-analysis was deemed inappropriate. 

Therefore, a narrative synthesis approach was employed, structured around the key functional domains of AI application in 

pediatric echocardiography: 

1. Automated Image Acquisition and View Classification 
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2. Cardiac Structure Segmentation and Quantification 

3. Anomaly Detection and Diagnostic Support 

4. Predictive Modeling for Clinical Outcomes in Critical Cardiology 

Each study’s findings were compared across these domains to elucidate methodological strengths, validation depth, and 

translational readiness. Descriptive statistics summarized study characteristics, sample sizes, and algorithm types. 

A qualitative thematic analysis complemented the narrative synthesis to identify cross-cutting themes, including: (a) performance 

limitations linked to small pediatric datasets; (b) interpretability and clinician trust; (c) real-time integration in the intensive care 

workflow; and (d) ethical, regulatory, and data governance challenges in pediatric AI deployment. 

 

Ethical Considerations and Protocol Transparency 

This review synthesized published, peer-reviewed data and therefore did not require institutional ethical approval. Nevertheless, 

the review adhered to ethical standards of systematic research integrity, emphasizing transparency in data selection, 

reproducibility of analytical steps, and acknowledgment of potential publication bias. 

All decisions regarding inclusion, extraction, and synthesis were documented in an audit trail, ensuring that the review process 

met contemporary standards for reproducibility and accountability in biomedical AI research. 

 

RESULTS  
Search results 

As showin in Figure 1, a total of 4,872 records were identified through database searching (PubMed, Embase, Scopus, IEEE 

Xplore, Web of Science, and Cochrane), and an additional 314 records were retrieved from trial and preprint registers such as 

ClinicalTrials.gov and Google Scholar. Following deduplication, 1,083 duplicate records were removed, leaving 4,103 records 

for initial screening. After reviewing titles and abstracts, 3,212 records were excluded as clearly irrelevant to AI or pediatric 

echocardiography. The remaining 891 reports were sought for full-text retrieval, of which 17 could not be accessed despite 

repeated attempts. A total of 874 reports were assessed for eligibility based on predefined inclusion and exclusion criteria. During 

this stage, 268 reports were excluded for focusing exclusively on adult or mixed-age populations, 119 for addressing imaging 

modalities other than echocardiography, 184 for lacking AI or machine-learning content, 162 for presenting simulation-only or 

non-clinical validation data, 71 for insufficient methodological detail or absence of diagnostic/quantitative performance 

outcomes, and 44 due to duplication or overlapping cohorts. Consequently, 26 studies met all inclusion criteria and were 

incorporated into the final systematic review, representing 26 distinct full-text reports. This rigorous multistage selection process 

ensured a focused synthesis of high-quality, clinically validated research on AI-driven echocardiographic decision-making in 

pediatric critical cardiology (Alvarez et al., 2007; Brown et al., 2024; Chen et al., 2024; Dellas et al., 2018; Edwards et al., 2024; 

Gearhart et al., 2022; Guo et al., 2021; Hu et al., 2019; X. Jiang et al., 2023; Li et al., 2024; Lin et al., 2023; Liu et al., 2021; 

Meza et al., 2018; Narang et al., 2021; Narula et al., 2016; Nguyen et al., 2022; Peck et al., 2023; Reddy et al., 2023; Ufkes et al., 

2023; Vasile et al., 2023; A. Wang et al., 2025; J. Wang et al., 2021; Wu et al., 2022; Ye et al., 2025; Zhang et al., 2018;  et al., 

2025). 

 
Figure 1: PRISMA 2020 flow diagram 
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Risk assessment: 

The overall risk of bias across the 26 included studies was generally low (Figure 2), reflecting satisfactory methodological rigor 

within this emerging research field. Most diagnostic and measurement-based studies were evaluated using the QUADAS-2 tool, 

and the few prognostic or phenotyping models were assessed via PROBAST domains. The aggregate findings indicate that the 

majority of studies—particularly those focusing on AI-guided acquisition, automated view classification, EF and strain 

quantification, and ASD or RHD detection—demonstrated a low risk of bias across all four domains, underscoring strong internal 

validity and dependable reference standards (Narang, 2021; Li, 2022; Peck, 2023; Reddy, 2023; Lin, 2023; Chen, 2024; Gearhart, 

2022). A moderate number of studies presented “some concerns,” primarily due to retrospective single-center designs, potential 

spectrum bias from non-consecutive patient selection, limited external validation, or unclear blinding between AI outputs and 

expert reference readings (Zhang, 2018; Narula, 2016; Ye, 2025; Liu, 2021; Brown, 2024; Hu, 2019; Guo, 2021; Jiang, 2023). 

These weaknesses slightly constrain generalizability but do not undermine the internal accuracy of the models. Two studies 

employing predictive modeling—the phenotyping of critical left-heart obstruction and cardiomyopathy prediction among 

childhood cancer survivors (Meza, 2018; Edwards, 2024)—exhibited moderate concerns in several PROBAST domains, 

reflecting typical challenges for early-stage AI prognostic research, including retrospective data assembly, incomplete calibration 

reporting, and potential overfitting. Contextual and narrative reviews (Edpuganti, 2025; Nguyen, 2022; Alvarez, 2007; Wang, 

2025) were appropriately marked as not applicable, as randomization and blinding domains are irrelevant to their designs. In sum, 

the collective evidence base demonstrates high methodological confidence in studies validating AI for image acquisition, 

segmentation, and quantification in pediatric echocardiography, while highlighting the need for broader, multicenter prospective 

validation to address domain shift and enhance reproducibility. The low overall risk of bias supports the credibility of conclusions 

that AI can achieve expert-level accuracy, reduce variability, and augment decision-making in pediatric critical cardiology.  

 

Figure 2: risk of bias assessment 
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Main outcomes 

Below, we synthesize the principal findings of the 26 included studies into five cross-cutting themes that map how AI in pediatric 

echocardiography is moving “from images to interventions.” Together, these themes show accelerating capability (acquisition → 

interpretation → prediction), growing clinical comparability with experts, and persistent gaps that must be bridged for routine 

use at the bedside ( Table 2). 

 

1) AI-guided acquisition and standardization are maturing and enable task-shifting 

Across settings, AI is making pediatric echocardiography more obtainable and more uniform. Real-time guidance systems helped 

novices acquire diagnostic-quality studies comparable to experts, pointing to scalable screening and urgent-care pathways when 

pediatric sonographers are scarce (Peck, 2023; Narang, 2021). Robust view-recognition models tailored to children accurately 

label standard planes—an essential precursor for automated quantification and lesion detection (Wu, 2022; Gearhart, 2022). 

Together, these tools stabilize the “front end” of the echo pipeline by reducing operator dependency and ensuring that downstream 

algorithms receive analyzable inputs, even in noisy bedside contexts (Jiang, 2023; Nguyen, 2022). 

 

2) Automated detection of pediatric disease (CHD, RHD) shows expert-level screening potential 

Lesion-focused classifiers and multi-view pipelines now detect structural and valvular abnormalities with performance that rivals 

clinical readers. For CHD, seven-view deep learning models and color-Doppler-aware systems distinguish defects and localize 

abnormalities from routine transthoracic studies, offering a plausible assist for triage and referral (Jiang, 2023; Wang, 2021; Lin, 

2023). In RHD, view/frame selection plus automated mitral-regurgitation characterization achieved high diagnostic accuracy, 

mapping closely onto expert adjudication and suggesting a route to scale screening in endemic regions (Brown, 2024; Peck, 

2023). Collectively, these findings indicate that AI can transform pediatric echo from an expert bottleneck into a more widely 

deployable case-finding tool (Nguyen, 2022). 

 

3) Functional quantification (EF, strain, cardiac output) is accurate, reproducible, and feasible in critical care 

Pediatric-trained video and image models now deliver EF estimates with small errors and strong discrimination for systolic 

dysfunction, outperforming adult-trained models transferred to children (Reddy, 2023; EchoNet-Peds). Fully automated pipelines 

for LV volumes and GLS show excellent agreement with expert measurements while markedly reducing analysis time, supporting 

routine clinical use and serial follow-up (Li, 2022; Vasile, 2023). Importantly, in critically ill children on ECMO, automated EF 

tracked expert Simpson’s measurements with near-perfect reliability, enabling frequent, reproducible assessments across 

cannulation, maintenance, and weaning phases (Chen, 2024). Beyond EF, combined segmentation-and-Doppler models estimated 

cardiac output with clinically acceptable error, opening doors to real-time hemodynamic monitoring in the PICU (Ufkes, 2023). 

Under the hood, pediatric-centric segmentation architectures further improved border fidelity under speckle and motion, fortifying 

downstream quantification (Ye, 2025; Hu, 2019; Guo, 2021). 

 

4) End-to-end pipelines improve workflow and move pediatrics toward adult-level automation 

Adult studies defined the template for integrated AI—linking view selection, segmentation, quantification, and diagnostic 

classification in one loop (Zhang, 2018; Narula, 2016). Pediatric work is rapidly assembling the same chain: reliable view curation 

(Wu, 2022; Gearhart, 2022), robust chamber segmentation (Ye, 2025; Hu, 2019; Guo, 2021), and validated EF/strain/output 

estimation (Reddy, 2023; Li, 2022; Ufkes, 2023) now cohere into practical bedside workflows. In intensive care, this translates 

into standardized, faster measurements with less inter-observer variability and more bandwidth for teams to focus on 

interpretation and intervention rather than manual tracing (Chen, 2024; Nguyen, 2022). The net effect is a shift from ad hoc 

measurement to reproducible, high-frequency decision support. 

 

5) Translation gaps persist: pediatric data scarcity, generalizability, and pathway integration 

Despite momentum, several constraints still separate promising models from routine, high-stakes use. Pediatric datasets remain 

relatively small and heterogeneous by age, anatomy, and vendor; adult-trained systems underperform when naively applied to 

children, underscoring the need for pediatric-specific curation and multi-site sharing (Reddy, 2023; Vasile, 2023). Many studies 

are single-center or retrospective, with limited external validation across devices and care environments (Lin, 2023; Jiang, 2023). 

Workflow, governance, and competency issues—automation bias, explainability, and quality assurance—require structured 

implementation strategies and prospective trials that measure actual decision change and patient outcomes (Nguyen, 2022; Chen, 

2024). Finally, clinical endpoint anchoring remains crucial: linking AI-derived measurements to interventions and outcomes, as 

prior non-AI pediatric work has done for regurgitation burden, transplant risk, or procedural timing, will help close the loop from 

images to interventions (Dellas, 2018; Alvarez, 2007). 

 

DISCUSSION 
Artificial intelligence (AI) has rapidly evolved from a theoretical construct to a transformative clinical tool in cardiovascular 

imaging. Within pediatric critical cardiology, the findings of this review demonstrate that AI-enhanced echocardiography is no 

longer a futuristic concept but a tangible adjunct to diagnostic precision, workflow efficiency, and bedside decision-making. The 

reviewed studies collectively reveal that AI-driven systems can reliably automate view recognition, functional quantification, and 

lesion detection with expert-level accuracy. These advances are particularly meaningful in pediatric populations, where rapid 

physiologic changes, smaller cardiac structures, and high inter-patient variability complicate human interpretation (Maturi et al., 

2025; Myhre et al., 2025). This discussion interprets the main outcomes through the lenses of diagnostic performance, clinical 

integration, ethical and operational challenges, and the road ahead toward intervention-linked decision support. 

 

Diagnostic and Quantitative Precision 

Echocardiography remains the cornerstone for diagnosing congenital and acquired heart disease in children, but its operator 
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dependency has historically limited reproducibility. AI has mitigated these limitations by introducing automated pipelines for 

image acquisition, segmentation, and quantification. Several studies outside our review have similarly confirmed that 

convolutional neural networks (CNNs) and transformer-based architectures enhance diagnostic reliability. (Madani et al., 2018) 

demonstrated that a deep learning model trained on over 200,000 echocardiographic images achieved over 97% accuracy in 

standard view classification, laying the foundation for cross-age applicability. In a multicenter cohort. (Ouyang et al., 2020) 

validated the EchoNet-Dynamic system, which predicted left ventricular ejection fraction (LVEF) within a 5% margin of expert 

consensus—a threshold that meets clinical decision relevance. Though their cohort was predominantly adult, their methodological 

rigor and interpretability frameworks illustrate how such architectures can be fine-tuned for pediatric cohorts with anatomical 

heterogeneity. The convergence of these results with our findings highlights the universality of deep learning’s capacity to 

enhance objectivity in echocardiographic quantification. 

 

Clinical Translation and Workflow Optimization 

A recurrent advantage observed across the reviewed literature is workflow acceleration without compromising accuracy. Beyond 

pediatrics, (Sveric et al., 2024) reported that automated border detection and LVEF computation reduced analysis time by over 

80% compared to manual tracing. Similar productivity gains have been observed in cardiac intensive care settings, where AI-

assisted echo shortened reporting time and decreased interobserver variability (Tolu‐Akinnawo et al., 2025). In pediatric practice, 

such efficiency directly influences outcomes—facilitating rapid titration of inotropes, timely ECMO initiation, or adjustment of 

pulmonary vasodilators. Moreover, the growing integration of AI into handheld echocardiography systems exemplifies the 

democratization of diagnostic imaging (Chilcote et al., 2024). Systems such as the Butterfly iQ+ and Caption AI employ onboard 

deep learning for real-time guidance and view quality feedback, which has proven particularly valuable in resource-limited 

neonatal and PICU environments (Choudhury & Urena, 2022; Sullivan et al., 2024). These technologies align with the current 

evidence base from our synthesis, reinforcing that AI’s greatest clinical utility lies in augmenting—not replacing—human 

judgment (Higgins & Wilson, 2025). 

 

Challenges in Pediatric Adaptation 

Despite the promising outcomes, translating adult-trained AI models to pediatric populations remains fraught with challenges. 

Anatomical diversity across developmental stages—ranging from neonates to adolescents—renders adult-based models less 

generalizable. Existing literature emphasizes the necessity of age-stratified datasets and tailored network architectures (Park et 

al., 2025).  Zuercher et al., (2022) showed that retraining adult LVEF models on pediatric data improved accuracy by nearly 12%, 

underlining the importance of domain-specific calibration. Moreover, vendor variability and differences in ultrasound frequency 

introduce additional bias, complicating external validation. From a technical perspective, pediatric AI models must address the 

“data scarcity paradox,” wherein rare congenital defects require large sample sizes for reliable algorithmic learning but occur too 

infrequently for conventional training paradigms. Federated learning and synthetic data augmentation have emerged as viable 

countermeasures, allowing privacy-preserving, cross-institutional model training without direct data exchange (Rabbani et al., 

2025). 

 

Ethical, Regulatory, and Interpretability Considerations 

As AI applications progress toward clinical deployment, interpretability and accountability remain central to ethical governance. 

The European Society of Cardiology and U.S. Food and Drug Administration have underscored the importance of “human-in-

the-loop” frameworks to ensure that algorithmic outputs complement, rather than override, clinical reasoning (M. P. Singh & 

Keche, 2025). Within pediatrics, interpretability carries additional moral weight because clinical decisions often involve proxy 

consent and high emotional stakes for families. Explainable AI (XAI) techniques—such as Grad-CAM and saliency mapping—

offer transparency into model decision pathways, enabling clinicians to validate outputs against established pathophysiologic 

reasoning (Allen et al., 2025). Moreover, the ethical imperative extends to dataset representation: underrepresentation of minority 

pediatric populations risks perpetuating inequities in access to precision diagnostics (Agrawal et al., 2025). Consequently, 

algorithm developers are urged to adhere to FAIR (Findable, Accessible, Interoperable, and Reusable) principles and pediatric-

specific reporting standards akin to the TRIPOD-AI guidelines (Salybekov et al., 2024). 

 

From Automation to Intervention: The Decision-Making Continuum 

The true promise of AI-driven echocardiography lies in bridging the gap between imaging and intervention. Predictive and 

prescriptive models are beginning to forecast postoperative outcomes, guide device selection, and simulate procedural success 

probabilities. For instance, (Alsharqi & Edelman, 2025) developed a hybrid AI model integrating echocardiographic metrics and 

clinical parameters to predict adverse outcomes after congenital heart surgery, achieving a C-statistic of 0.89. Similarly,  

(Lipshultz et al., 2019) demonstrated that AI-derived strain analysis could predict deterioration in pediatric myocarditis before 

conventional measures of systolic dysfunction. Such developments mirror the aspirational goal of this review—shifting from 

static image interpretation toward dynamic, patient-specific decision support. As multimodal data integration expands, linking 

echocardiography with hemodynamic monitoring and genetic data may further enhance personalized intervention planning (L. 

Jiang et al., 2025). 

 

Limitations and Future Directions 

While the cumulative evidence underscores AI’s transformative potential, methodological heterogeneity remains a barrier to 

meta-analytic synthesis. Differences in imaging hardware, annotation protocols, and evaluation metrics hinder direct comparison. 

Furthermore, few pediatric AI studies have undergone prospective, randomized clinical validation—a step necessary for 

regulatory approval and ethical implementation. Future research should prioritize multicenter, longitudinal studies employing 

harmonized evaluation frameworks and standardized performance benchmarks such as Dice similarity coefficients for 

segmentation and Bland–Altman analysis for agreement. Beyond accuracy metrics, investigators should assess downstream 
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clinical outcomes, such as decision modification rates, diagnostic turnaround time, and cost-effectiveness. Integrating continuous 

learning systems that update models with new patient data under institutional oversight may represent the next phase of safe, 

adaptive AI in pediatric echocardiography. 

 

CONCLUSION 
In summary, this review confirms that AI-driven echocardiography represents a paradigm shift in pediatric critical cardiology. 

The technology has matured from pilot experimentation to clinically relevant, reproducible applications capable of augmenting 

diagnostic and therapeutic decisions. By refining acquisition, standardizing quantification, and offering real-time support, AI 

extends the reach of echocardiography into scenarios where expert sonographers are unavailable and time is of the essence. 

Nonetheless, realizing its full clinical potential requires overcoming data, ethical, and regulatory challenges through collaboration 

among engineers, clinicians, and ethicists. The path from images to interventions is thus not only technological but profoundly 

human—anchored in trust, transparency, and a shared commitment to improving pediatric cardiovascular care. 
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