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ABSTRACT

Background: Echocardiography is the cornerstone of cardiac evaluation in pediatric critical care, yet its accuracy depends heavily
on operator expertise. Artificial intelligence (AI) and machine learning (ML) have emerged as transformative tools in
cardiovascular imaging, capable of automating image acquisition, segmentation, and interpretation. Despite rapid progress in
adult cardiology, their integration into pediatric echocardiography remains underexplored.

Objective: To systematically synthesize evidence on the application of Al in echocardiographic decision-making for pediatric
patients with congenital or critical heart disease, emphasizing diagnostic accuracy, workflow efficiency, and clinical translation.

Methods: This review followed PRISMA 2020 guidelines (PROSPERO: CRD420251165361). Comprehensive searches were
conducted across PubMed, Embase, IEEE Xplore, Web of Science, Scopus, and Cochrane databases (2010—October 2025).
Eligible studies applied AI/ML algorithms to pediatric echocardiographic image acquisition, lesion detection, or functional
quantification. Data were extracted on model type, task, performance metrics, and clinical integration. Quality assessment used
QUADAS-2 and PROBAST tools.

Results: Twenty-six studies met inclusion criteria. AI demonstrated expert-level performance in view classification, ejection
fraction estimation, and congenital lesion detection, reducing interobserver variability and analysis time. Integrative pipelines and
real-time guidance improved acquisition consistency and enabled bedside deployment. However, most studies were single-center
with limited external validation.

Conclusion: Al-driven echocardiography enhances diagnostic precision and workflow efficiency in pediatric critical cardiology
but requires multicenter validation, ethical governance, and interoperability frameworks for clinical adoption.
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INTRODUCTION

Congenital and critical heart diseases remain the leading causes of childhood morbidity and mortality worldwide. The global birth
prevalence of congenital heart disease (CHD) is commonly cited at roughly 8—12 per 1,000 live births, with substantial regional
variation and a persistent burden in low- and middle-income countries (Xu et al., 2025). Despite advances in fetal screening,
perioperative care, and intensive care, CHD and acute pediatric cardiac conditions continue to account for significant mortality
and years lived with disability; in 2017 alone, an estimated quarter of a million deaths were attributed to CHD (Meng et al., 2024).
Echocardiography is the cornerstone of diagnosis, hemodynamic assessment, and longitudinal monitoring across neonatal, infant,
and pediatric critical care pathways because it is portable, radiation-free, and repeatedly deployable at the bedside (Shokr et al.,
2023; Y. Singh, 2017).

Yet, the strengths of echocardiography are tempered by well-recognized limitations that are amplified in high-acuity settings.
Image acquisition and interpretation are highly operator-dependent; acoustic windows may be suboptimal in ventilated or post-
operative patients; and the time-sensitive, distraction-laden environment of pediatric intensive care heightens the risk of
diagnostic subjectivity (Grotberg et al., 2024). Inter-observer and intra-observer variability in standard pediatric measurements—
including ventricular dimensions, function indices, and myocardial deformation—can be clinically meaningful, and variability
across vendors further complicates serial assessment and multicenter comparisons (Thompson et al., 2021). Even with
contemporary guidance that codifies protocols and quality standards, practice heterogeneity persists and can delay or distort
decision-making when minutes matter (Bretthauer & Kalager, 2018)

Against this backdrop, artificial intelligence (Al) and machine learning (ML) have emerged as powerful tools for medical
imaging—Iearning complex, high-dimensional patterns from pixels and structured data to augment accuracy, speed, and
consistency (Obuchowicz et al., 2025). In adult cardiology and echocardiography, Al systems already automate view
classification, perform chamber segmentation, estimate left ventricular ejection fraction, and flag measurement outliers, while
enabling triage and decision support in near real time (“Al in Echocardiography: State-of-the-Art Automated Measurement
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Techniques and Clinical Applications,” 2025; Olaisen et al., 2024). These applications reduce manual variability, standardize
workflows, and allow clinicians to focus attention on interpretation and intervention rather than repetitive measurement tasks
(Shamszare & Choudhury, 2023).

Pediatric applications are advancing quickly but remain comparatively nascent. In the prenatal domain, deep-learning ensembles
have achieved expert-level detection of complex CHD from fetal ultrasound views, and external validations continue to probe
generalizability across centers (Arnaout et al., 2021). Emerging systems assist fetal anomaly scanning with real-time quality
assessment and anomaly flagging, though performance varies for small or subtle structures (Yousefpour Shahrivar et al., 2023).
Beyond the fetus, early pediatric echocardiography studies report progress in view classification, segmentation, and CHD
recognition on transthoracic images and cine loops (Ge, 2013; Lopez et al., 2024). Parallel work in pediatric cardiac critical care
leverages ML models that integrate perioperative and echocardiographic parameters to predict adverse postoperative outcomes,
survival, and longitudinal risks after congenital heart surgery—often outperforming traditional clinical scores, albeit with caveats
around validation (Tong et al., 2024; Zurn et al., 2023). Collectively, these efforts sketch a trajectory from image acquisition
assistance to automated quantification and risk prediction that could meaningfully compress time-to-diagnosis and align care with
physiological trajectories in the pediatric ICU (Allam et al., 2021; Trujillo Rivera et al., 2021).

However, critical gaps impede translation from promising prototypes to routine, high-stakes use. Pediatric cardiology faces
structurally small, heterogeneous datasets spanning diverse anatomies, age-related physiology, and device contexts; domain shift
across scanners, protocols, and institutions reduces model robustness and transportability (Tasmurzayev et al., 2025). Labeling is
labor-intensive and requires subspecialist consensus, limiting the scale and fidelity of training data. Many published models
remain single-center, retrospective, or narrowly task-defined, with sparse prospective, workflow-embedded trials demonstrating
impact on clinical decisions and outcomes (Chilamkurthy et al., 2018). Interpretability and calibration—central to clinician
trust—are variably addressed, and regulatory, ethical, and equity considerations need explicit handling to avoid widening
disparities. Even when technical performance is strong, integration hurdles—interfacing with scanners, synchronizing with
reporting systems, and delivering actionable outputs at the bedside—can blunt real-world utility in fast-moving critical care
(Weiner et al., 2025).

This manuscript responds to these needs by focusing on the juncture most consequential for children with life-threatening cardiac
disease: converting images into timely, defensible interventions. Specifically, we posit that an Al-driven echocardiographic
decision-making framework—spanning standardized acquisition support, automated quantification, and risk-aware
recommendations—can reduce observer variability, accelerate recognition of deteriorating physiology, and provide transparent,
context-specific guidance to the multidisciplinary pediatric critical care team. Our objectives are threefold: first, to synthesize
and operationalize state-of-the-art Al methods for pediatric echocardiography into a clinically coherent pipeline; second, to
evaluate its performance and generalizability against expert assessment and relevant outcomes in critical care scenarios; and third,
to examine interpretability, workflow integration, and ethical safeguards essential for safe deployment. By centering clinical
actionability and bedside integration, we aim to help move pediatric echocardiography from “images to interventions,” narrowing
diagnostic delays and supporting precise, equitable care when physiological reserve is limited and decisions are time-critical.
Method

MATERIAL AND METHODS

Search Strategy and Selection Criteria

This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA 2020) guidelines to ensure methodological transparency, reproducibility, and scientific rigor. The review protocol was
registered prospectively with PROSPERO (Registration ID: CRD420251165361) before data extraction commenced.

To comprehensively capture the evolving applications of artificial intelligence (Al) and machine learning (ML) in pediatric
echocardiography and critical cardiology, a systematic search was performed across PubMed/MEDLINE, Embase, Scopus, IEEE
Xplore, Web of Science, and Cochrane Library databases. Supplementary searches were also conducted in Google Scholar and
ClinicalTrials.gov to identify gray literature and ongoing trials. The final database search was completed on October 5, 2025.

The search strategy combined controlled vocabulary (MeSH/Emtree) and free-text terms related to artificial intelligence, machine
learning, deep learning, echocardiography, pediatric, and critical cardiology. Boolean operators and truncation were used to
refine the query. A detailed search strategy is presented in Table 1.

Table 1: Search Strategy for AI-Driven Echocardiography in Pediatric Critical Cardiology
Database Search Terms
PubMed/MEDLINE | (“Artificial Intelligence”[Mesh] OR “Machine Learning” OR “Deep Learning” OR ‘“Neural
Network™) AND (“Echocardiography”’[Mesh] OR “Cardiac Ultrasound” OR “Echocardiogram”)
AND (“Pediatric’[Mesh] OR “Children” OR “Infant” OR “Neonate”) AND (“Critical Care” OR
“Cardiac ICU” OR “Intensive Care”)
Embase (‘artificial  intelligence’/exp OR  ‘machine learning OR  ‘deep learning’) AND
(‘echocardiography’/exp OR ‘cardiac ultrasound’) AND (‘pediatric’/exp OR ‘child’ OR ‘infant’)
AND (‘critical care’ OR ‘intensive care” OR ‘cardiac surgery’)
IEEE Xplore (“Artificial Intelligence” OR “Machine Learning” OR “Deep Learning”) AND (“Echocardiography”
OR “Cardiac Ultrasound”) AND (“Pediatric” OR “Children”)

129
VASCULAR & ENDOVASCULAR REVIEW

www.VERjournal.com


http://www.verjournal.com/

From Images to Interventions: Al-Driven Echocardiographic Decision-Making in Pediatric Critical Heart Diseases

Scopus / Web of | (“Artificial Intelligence” OR “Machine Learning” OR “Deep Learning”) AND (“Echocardiography”
Science OR “Cardiac Ultrasound”) AND (“Pediatric” OR “Children”) AND (“Critical Cardiology” OR
“Cardiac Intensive Care”)

Cochrane Library (“Artificial Intelligence” OR “Machine Learning”) AND (“Echocardiography”) AND (“Pediatric”)
Reference lists of included studies and relevant reviews were manually screened to identify additional eligible studies not captured
in database searches.

Eligibility Criteria for Screening

All retrieved records were imported into EndNote X20 for deduplication, followed by independent screening using Rayyan QCRI
by two reviewers (xx. and xx.). Titles and abstracts were first screened for relevance, and potentially eligible articles underwent
full-text evaluation.

Inclusion criteria were as follows:

1. Population: Studies involving pediatric patients (neonates to adolescents <18 years) with congenital or acquired cardiac
disease or admitted to pediatric intensive/cardiac care units.

2. Intervention: Application of AI/ML algorithms in echocardiographic image acquisition, segmentation, quantification,
anomaly detection, or decision support.

3. Outcomes: Diagnostic accuracy, workflow efficiency, predictive or prognostic performance, or clinical decision-
making improvement.

4. Design: Original empirical studies, including diagnostic accuracy studies, clinical trials, cohort analyses, retrospective
validations, or technical evaluations with clinical data.

5. Language and Time Frame: English-language publications from January 2010 to October 2025, reflecting the modern
deep-learning era.

Exclusion criteria encompassed: (a) studies exclusively in adults, (b) animal or simulation-only work, (c) conference abstracts
without full peer-reviewed data, (d) purely technical studies lacking echocardiographic or clinical validation, and (e) non-Al
automation or statistical modeling approaches.

Data Extraction Process
Data extraction was performed independently by two reviewers using a standardized extraction sheet developed in Microsoft
Excel. Any discrepancies were resolved through discussion or adjudication by a third reviewer (xx.). Extracted data included:

e  Study Characteristics: author(s), year of publication, country, and journal source.

e Population Details: sample size, age range, cardiac diagnosis, and clinical context (e.g., CHD type, ICU status,
postoperative period).

e AI/ML Methodology: algorithm category (supervised, unsupervised, reinforcement, or deep learning), network
architecture (CNN, U-Net, transformer, etc.), dataset size, data preprocessing, and ground-truth labeling method.

e Echocardiographic Application: image acquisition support, view classification, segmentation, quantification,
anomaly detection, or decision support.

e Validation and Performance Metrics: cross-validation type, external validation presence, and reported metrics such
as accuracy, sensitivity, specificity, area under the curve (AUC), mean absolute error (MAE), or dice similarity
coefficient (DSC).

e  Clinical and Workflow Outcomes: diagnostic agreement with experts, time savings, real-time feasibility, and potential
for integration into clinical pathways.

e Implementation and Ethical Considerations: model interpretability, explainability methods (e.g., Grad-CAM,
SHAP), data bias, and integration barriers.

The final dataset was cross-verified to ensure completeness and consistency across studies before synthesis.

Quality Assessment

Quality and risk-of-bias assessment were performed using the QUADAS-2 tool, which is widely endorsed for evaluating
diagnostic accuracy studies. QUADAS-2 assesses four domains—(1) patient selection, (2) index test, (3) reference standard, and
(4) flow and timing—evaluating each for risk of bias and applicability. Studies with unclear or high risk in >2 domains were
flagged for sensitivity analysis.

For studies employing predictive or prognostic ML models without explicit diagnostic comparison, the Prediction Model Risk of
Bias Assessment Tool (PROBAST) was additionally applied to evaluate bias in model development, analysis, and validation.
Two reviewers conducted assessments independently; discrepancies were resolved by consensus.

A summary risk-of-bias figure and tabular breakdown were generated using the ROBVIS visualization tool, ensuring transparent
reporting of methodological rigor.

Data Synthesis and Analysis
Given the heterogeneity of Al architectures, imaging modalities, and clinical outcomes, meta-analysis was deemed inappropriate.
Therefore, a narrative synthesis approach was employed, structured around the key functional domains of Al application in
pediatric echocardiography:

1. Automated Image Acquisition and View Classification

130
VASCULAR & ENDOVASCULAR REVIEW

www.VERjournal.com


http://www.verjournal.com/

From Images to Interventions: Al-Driven Echocardiographic Decision-Making in Pediatric Critical Heart Diseases

2. Cardiac Structure Segmentation and Quantification

3. Anomaly Detection and Diagnostic Support

4. Predictive Modeling for Clinical Outcomes in Critical Cardiology
Each study’s findings were compared across these domains to elucidate methodological strengths, validation depth, and
translational readiness. Descriptive statistics summarized study characteristics, sample sizes, and algorithm types.
A qualitative thematic analysis complemented the narrative synthesis to identify cross-cutting themes, including: (a) performance
limitations linked to small pediatric datasets; (b) interpretability and clinician trust; (c) real-time integration in the intensive care
workflow; and (d) ethical, regulatory, and data governance challenges in pediatric Al deployment.

Ethical Considerations and Protocol Transparency

This review synthesized published, peer-reviewed data and therefore did not require institutional ethical approval. Nevertheless,
the review adhered to ethical standards of systematic research integrity, emphasizing transparency in data selection,
reproducibility of analytical steps, and acknowledgment of potential publication bias.

All decisions regarding inclusion, extraction, and synthesis were documented in an audit trail, ensuring that the review process
met contemporary standards for reproducibility and accountability in biomedical Al research.

RESULTS

Search results

As showin in Figure 1, a total of 4,872 records were identified through database searching (PubMed, Embase, Scopus, IEEE
Xplore, Web of Science, and Cochrane), and an additional 314 records were retrieved from trial and preprint registers such as
ClinicalTrials.gov and Google Scholar. Following deduplication, 1,083 duplicate records were removed, leaving 4,103 records
for initial screening. After reviewing titles and abstracts, 3,212 records were excluded as clearly irrelevant to Al or pediatric
echocardiography. The remaining 891 reports were sought for full-text retrieval, of which 17 could not be accessed despite
repeated attempts. A total of 874 reports were assessed for eligibility based on predefined inclusion and exclusion criteria. During
this stage, 268 reports were excluded for focusing exclusively on adult or mixed-age populations, 119 for addressing imaging
modalities other than echocardiography, 184 for lacking Al or machine-learning content, 162 for presenting simulation-only or
non-clinical validation data, 71 for insufficient methodological detail or absence of diagnostic/quantitative performance
outcomes, and 44 due to duplication or overlapping cohorts. Consequently, 26 studies met all inclusion criteria and were
incorporated into the final systematic review, representing 26 distinct full-text reports. This rigorous multistage selection process
ensured a focused synthesis of high-quality, clinically validated research on Al-driven echocardiographic decision-making in
pediatric critical cardiology (Alvarez et al., 2007; Brown et al., 2024; Chen et al., 2024; Dellas et al., 2018; Edwards et al., 2024;
Gearhart et al., 2022; Guo et al., 2021; Hu et al., 2019; X. Jiang et al., 2023; Li et al., 2024; Lin et al., 2023; Liu et al., 2021;
Meza et al., 2018; Narang et al., 2021; Narula et al., 2016; Nguyen et al., 2022; Peck et al., 2023; Reddy et al., 2023; Ufkes et al.,
2023; Vasile et al., 2023; A. Wang et al., 2025; J. Wang et al., 2021; Wu et al., 2022; Ye et al., 2025; Zhang et al., 2018; etal.,
2025).
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Figure 1: PRISMA 2020 flow diagram
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Risk assessment:

The overall risk of bias across the 26 included studies was generally low (Figure 2), reflecting satisfactory methodological rigor
within this emerging research field. Most diagnostic and measurement-based studies were evaluated using the QUADAS-2 tool,
and the few prognostic or phenotyping models were assessed via PROBAST domains. The aggregate findings indicate that the
majority of studies—particularly those focusing on Al-guided acquisition, automated view classification, EF and strain
quantification, and ASD or RHD detection—demonstrated a low risk of bias across all four domains, underscoring strong internal
validity and dependable reference standards (Narang, 2021; Li, 2022; Peck, 2023; Reddy, 2023; Lin, 2023; Chen, 2024; Gearhart,
2022). A moderate number of studies presented “some concerns,” primarily due to retrospective single-center designs, potential
spectrum bias from non-consecutive patient selection, limited external validation, or unclear blinding between Al outputs and
expert reference readings (Zhang, 2018; Narula, 2016; Ye, 2025; Liu, 2021; Brown, 2024; Hu, 2019; Guo, 2021; Jiang, 2023).
These weaknesses slightly constrain generalizability but do not undermine the internal accuracy of the models. Two studies
employing predictive modeling—the phenotyping of critical left-heart obstruction and cardiomyopathy prediction among
childhood cancer survivors (Meza, 2018; Edwards, 2024)—exhibited moderate concerns in several PROBAST domains,
reflecting typical challenges for early-stage Al prognostic research, including retrospective data assembly, incomplete calibration
reporting, and potential overfitting. Contextual and narrative reviews (Edpuganti, 2025; Nguyen, 2022; Alvarez, 2007; Wang,
2025) were appropriately marked as not applicable, as randomization and blinding domains are irrelevant to their designs. In sum,
the collective evidence base demonstrates high methodological confidence in studies validating Al for image acquisition,
segmentation, and quantification in pediatric echocardiography, while highlighting the need for broader, multicenter prospective
validation to address domain shift and enhance reproducibility. The low overall risk of bias supports the credibility of conclusions
that Al can achieve expert-level accuracy, reduce variability, and augment decision-making in pediatric critical cardiology.
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Main outcomes

Below, we synthesize the principal findings of the 26 included studies into five cross-cutting themes that map how Al in pediatric
echocardiography is moving “from images to interventions.” Together, these themes show accelerating capability (acquisition —
interpretation — prediction), growing clinical comparability with experts, and persistent gaps that must be bridged for routine
use at the bedside ( Table 2).

1) Al-guided acquisition and standardization are maturing and enable task-shifting

Across settings, Al is making pediatric echocardiography more obtainable and more uniform. Real-time guidance systems helped
novices acquire diagnostic-quality studies comparable to experts, pointing to scalable screening and urgent-care pathways when
pediatric sonographers are scarce (Peck, 2023; Narang, 2021). Robust view-recognition models tailored to children accurately
label standard planes—an essential precursor for automated quantification and lesion detection (Wu, 2022; Gearhart, 2022).
Together, these tools stabilize the “front end” of the echo pipeline by reducing operator dependency and ensuring that downstream
algorithms receive analyzable inputs, even in noisy bedside contexts (Jiang, 2023; Nguyen, 2022).

2) Automated detection of pediatric disease (CHD, RHD) shows expert-level screening potential

Lesion-focused classifiers and multi-view pipelines now detect structural and valvular abnormalities with performance that rivals
clinical readers. For CHD, seven-view deep learning models and color-Doppler-aware systems distinguish defects and localize
abnormalities from routine transthoracic studies, offering a plausible assist for triage and referral (Jiang, 2023; Wang, 2021; Lin,
2023). In RHD, view/frame selection plus automated mitral-regurgitation characterization achieved high diagnostic accuracy,
mapping closely onto expert adjudication and suggesting a route to scale screening in endemic regions (Brown, 2024; Peck,
2023). Collectively, these findings indicate that Al can transform pediatric echo from an expert bottleneck into a more widely
deployable case-finding tool (Nguyen, 2022).

3) Functional quantification (EF, strain, cardiac output) is accurate, reproducible, and feasible in critical care
Pediatric-trained video and image models now deliver EF estimates with small errors and strong discrimination for systolic
dysfunction, outperforming adult-trained models transferred to children (Reddy, 2023; EchoNet-Peds). Fully automated pipelines
for LV volumes and GLS show excellent agreement with expert measurements while markedly reducing analysis time, supporting
routine clinical use and serial follow-up (Li, 2022; Vasile, 2023). Importantly, in critically ill children on ECMO, automated EF
tracked expert Simpson’s measurements with near-perfect reliability, enabling frequent, reproducible assessments across
cannulation, maintenance, and weaning phases (Chen, 2024). Beyond EF, combined segmentation-and-Doppler models estimated
cardiac output with clinically acceptable error, opening doors to real-time hemodynamic monitoring in the PICU (Ufkes, 2023).
Under the hood, pediatric-centric segmentation architectures further improved border fidelity under speckle and motion, fortifying
downstream quantification (Ye, 2025; Hu, 2019; Guo, 2021).

4) End-to-end pipelines improve workflow and move pediatrics toward adult-level automation

Adult studies defined the template for integrated Al—Ilinking view selection, segmentation, quantification, and diagnostic
classification in one loop (Zhang, 2018; Narula, 2016). Pediatric work is rapidly assembling the same chain: reliable view curation
(Wu, 2022; Gearhart, 2022), robust chamber segmentation (Ye, 2025; Hu, 2019; Guo, 2021), and validated EF/strain/output
estimation (Reddy, 2023; Li, 2022; Ufkes, 2023) now cohere into practical bedside workflows. In intensive care, this translates
into standardized, faster measurements with less inter-observer variability and more bandwidth for teams to focus on
interpretation and intervention rather than manual tracing (Chen, 2024; Nguyen, 2022). The net effect is a shift from ad hoc
measurement to reproducible, high-frequency decision support.

5) Translation gaps persist: pediatric data scarcity, generalizability, and pathway integration

Despite momentum, several constraints still separate promising models from routine, high-stakes use. Pediatric datasets remain
relatively small and heterogeneous by age, anatomy, and vendor; adult-trained systems underperform when naively applied to
children, underscoring the need for pediatric-specific curation and multi-site sharing (Reddy, 2023; Vasile, 2023). Many studies
are single-center or retrospective, with limited external validation across devices and care environments (Lin, 2023; Jiang, 2023).
Workflow, governance, and competency issues—automation bias, explainability, and quality assurance—require structured
implementation strategies and prospective trials that measure actual decision change and patient outcomes (Nguyen, 2022; Chen,
2024). Finally, clinical endpoint anchoring remains crucial: linking Al-derived measurements to interventions and outcomes, as
prior non-Al pediatric work has done for regurgitation burden, transplant risk, or procedural timing, will help close the loop from
images to interventions (Dellas, 2018; Alvarez, 2007).

DISCUSSION

Artificial intelligence (Al) has rapidly evolved from a theoretical construct to a transformative clinical tool in cardiovascular
imaging. Within pediatric critical cardiology, the findings of this review demonstrate that Al-enhanced echocardiography is no
longer a futuristic concept but a tangible adjunct to diagnostic precision, workflow efficiency, and bedside decision-making. The
reviewed studies collectively reveal that Al-driven systems can reliably automate view recognition, functional quantification, and
lesion detection with expert-level accuracy. These advances are particularly meaningful in pediatric populations, where rapid
physiologic changes, smaller cardiac structures, and high inter-patient variability complicate human interpretation (Maturi et al.,
2025; Myhre et al., 2025). This discussion interprets the main outcomes through the lenses of diagnostic performance, clinical
integration, ethical and operational challenges, and the road ahead toward intervention-linked decision support.

Diagnostic and Quantitative Precision
Echocardiography remains the cornerstone for diagnosing congenital and acquired heart disease in children, but its operator
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dependency has historically limited reproducibility. Al has mitigated these limitations by introducing automated pipelines for
image acquisition, segmentation, and quantification. Several studies outside our review have similarly confirmed that
convolutional neural networks (CNNs) and transformer-based architectures enhance diagnostic reliability. (Madani et al., 2018)
demonstrated that a deep learning model trained on over 200,000 echocardiographic images achieved over 97% accuracy in
standard view classification, laying the foundation for cross-age applicability. In a multicenter cohort. (Ouyang et al., 2020)
validated the EchoNet-Dynamic system, which predicted left ventricular ejection fraction (LVEF) within a 5% margin of expert
consensus—a threshold that meets clinical decision relevance. Though their cohort was predominantly adult, their methodological
rigor and interpretability frameworks illustrate how such architectures can be fine-tuned for pediatric cohorts with anatomical
heterogeneity. The convergence of these results with our findings highlights the universality of deep learning’s capacity to
enhance objectivity in echocardiographic quantification.

Clinical Translation and Workflow Optimization

A recurrent advantage observed across the reviewed literature is workflow acceleration without compromising accuracy. Beyond
pediatrics, (Sveric et al., 2024) reported that automated border detection and LVEF computation reduced analysis time by over
80% compared to manual tracing. Similar productivity gains have been observed in cardiac intensive care settings, where Al-
assisted echo shortened reporting time and decreased interobserver variability (Tolu-Akinnawo et al., 2025). In pediatric practice,
such efficiency directly influences outcomes—facilitating rapid titration of inotropes, timely ECMO initiation, or adjustment of
pulmonary vasodilators. Moreover, the growing integration of Al into handheld echocardiography systems exemplifies the
democratization of diagnostic imaging (Chilcote et al., 2024). Systems such as the Butterfly iQ+ and Caption Al employ onboard
deep learning for real-time guidance and view quality feedback, which has proven particularly valuable in resource-limited
neonatal and PICU environments (Choudhury & Urena, 2022; Sullivan et al., 2024). These technologies align with the current
evidence base from our synthesis, reinforcing that AI’s greatest clinical utility lies in augmenting—not replacing—human
judgment (Higgins & Wilson, 2025).

Challenges in Pediatric Adaptation

Despite the promising outcomes, translating adult-trained Al models to pediatric populations remains fraught with challenges.
Anatomical diversity across developmental stages—ranging from neonates to adolescents—renders adult-based models less
generalizable. Existing literature emphasizes the necessity of age-stratified datasets and tailored network architectures (Park et
al., 2025). Zuercher et al., (2022) showed that retraining adult LVEF models on pediatric data improved accuracy by nearly 12%,
underlining the importance of domain-specific calibration. Moreover, vendor variability and differences in ultrasound frequency
introduce additional bias, complicating external validation. From a technical perspective, pediatric Al models must address the
“data scarcity paradox,” wherein rare congenital defects require large sample sizes for reliable algorithmic learning but occur too
infrequently for conventional training paradigms. Federated learning and synthetic data augmentation have emerged as viable
countermeasures, allowing privacy-preserving, cross-institutional model training without direct data exchange (Rabbani et al.,
2025).

Ethical, Regulatory, and Interpretability Considerations

As Al applications progress toward clinical deployment, interpretability and accountability remain central to ethical governance.
The European Society of Cardiology and U.S. Food and Drug Administration have underscored the importance of “human-in-
the-loop” frameworks to ensure that algorithmic outputs complement, rather than override, clinical reasoning (M. P. Singh &
Keche, 2025). Within pediatrics, interpretability carries additional moral weight because clinical decisions often involve proxy
consent and high emotional stakes for families. Explainable Al (XAl) techniques—such as Grad-CAM and saliency mapping—
offer transparency into model decision pathways, enabling clinicians to validate outputs against established pathophysiologic
reasoning (Allen et al., 2025). Moreover, the ethical imperative extends to dataset representation: underrepresentation of minority
pediatric populations risks perpetuating inequities in access to precision diagnostics (Agrawal et al., 2025). Consequently,
algorithm developers are urged to adhere to FAIR (Findable, Accessible, Interoperable, and Reusable) principles and pediatric-
specific reporting standards akin to the TRIPOD-AI guidelines (Salybekov et al., 2024).

From Automation to Intervention: The Decision-Making Continuum

The true promise of Al-driven echocardiography lies in bridging the gap between imaging and intervention. Predictive and
prescriptive models are beginning to forecast postoperative outcomes, guide device selection, and simulate procedural success
probabilities. For instance, (Alshargi & Edelman, 2025) developed a hybrid Al model integrating echocardiographic metrics and
clinical parameters to predict adverse outcomes after congenital heart surgery, achieving a C-statistic of 0.89. Similarly,
(Lipshultz et al., 2019) demonstrated that Al-derived strain analysis could predict deterioration in pediatric myocarditis before
conventional measures of systolic dysfunction. Such developments mirror the aspirational goal of this review—shifting from
static image interpretation toward dynamic, patient-specific decision support. As multimodal data integration expands, linking
echocardiography with hemodynamic monitoring and genetic data may further enhance personalized intervention planning (L.
Jiang et al., 2025).

Limitations and Future Directions

While the cumulative evidence underscores Al’s transformative potential, methodological heterogeneity remains a barrier to
meta-analytic synthesis. Differences in imaging hardware, annotation protocols, and evaluation metrics hinder direct comparison.
Furthermore, few pediatric Al studies have undergone prospective, randomized clinical validation—a step necessary for
regulatory approval and ethical implementation. Future research should prioritize multicenter, longitudinal studies employing
harmonized evaluation frameworks and standardized performance benchmarks such as Dice similarity coefficients for
segmentation and Bland—Altman analysis for agreement. Beyond accuracy metrics, investigators should assess downstream
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clinical outcomes, such as decision modification rates, diagnostic turnaround time, and cost-effectiveness. Integrating continuous
learning systems that update models with new patient data under institutional oversight may represent the next phase of safe,
adaptive Al in pediatric echocardiography.

CONCLUSION

In summary, this review confirms that Al-driven echocardiography represents a paradigm shift in pediatric critical cardiology.
The technology has matured from pilot experimentation to clinically relevant, reproducible applications capable of augmenting
diagnostic and therapeutic decisions. By refining acquisition, standardizing quantification, and offering real-time support, Al
extends the reach of echocardiography into scenarios where expert sonographers are unavailable and time is of the essence.
Nonetheless, realizing its full clinical potential requires overcoming data, ethical, and regulatory challenges through collaboration
among engineers, clinicians, and ethicists. The path from images to interventions is thus not only technological but profoundly
human—anchored in trust, transparency, and a shared commitment to improving pediatric cardiovascular care.
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