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ABSTRACT 

Stress is a pervasive neurobiological phenomenon that exerts profound effects on cognitive performance, influencing attention, 

memory, executive function, and emotional regulation. Chronic activation of the “hypothalamic–pituitary–adrenal (HPA)” axis 

disrupts homeostatic mechanisms, leading to structural and functional alterations in brain regions such as the prefrontal cortex, 

hippocampus, and amygdala. These neuroadaptive changes, mediated by glucocorticoid exposure, neuroinflammation, and 

neurotransmitter imbalances, have been strongly correlated with cognitive decline, anxiety disorders, and neurodegenerative 

conditions. Despite extensive neurobiological research, early and objective detection of stress-related cognitive impairment 

remains limited by the subjective nature of psychological assessments and the complex interplay of biological and behavioural  

factors. This study conducts a systematic review of neurobiological markers associated with stress encompassing hormonal “(e.g., 

cortisol, ACTH), neurochemical (e.g., BDNF, serotonin, dopamine), electrophysiological (e.g., EEG spectral patterns)”, and 

neuroimaging-based indicators (e.g., fMRI connectivity) and evaluates their integration with machine learning (ML) approaches 

for early diagnosis. The paper proposes a hybrid ML-based predictive framework combining multimodal biomarker data with 

deep learning models to enhance classification accuracy and interpretability. Comparative analysis of existing studies 

demonstrates that ML algorithms, particularly convolutional and recurrent neural networks, can effectively capture complex 

nonlinear relationships between stress biomarkers and cognitive outcomes. The findings suggest that a data-driven 

neurobiological model could revolutionize early detection, personalized intervention, and cognitive resilience monitoring. This 

review contributes to the growing intersection of neuroscience, computational psychiatry, and artificial intelligence by outlining 

how machine learning can serve as a bridge between biological mechanisms and clinical prediction in stress-related cognitive 

dysfunction 
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INTRODUCTION 

Stress is an adaptive physiological response that enables organisms to maintain equilibrium in the face of environmental and 

psychological challenges. However, when stress becomes chronic or dysregulated, it exerts deleterious effects on brain structure 

and function, ultimately impairing cognitive performance. The neurobiology of stress revolves around the dynamic interaction of 

neuroendocrine, neurochemical, and neuroanatomical systems, primarily orchestrated through the “hypothalamic–pituitary–

adrenal (HPA)” axis, autonomic nervous system (ANS), and associated neural circuitry within the prefrontal cortex, amygdala, 

and hippocampus. Activation of the HPA axis results in glucocorticoid release, particularly cortisol, which in moderate amounts 

facilitates adaptive cognition but, under prolonged exposure, leads to neuronal atrophy, synaptic loss, and disrupted neurogenesis. 

These changes contribute to cognitive deficits in attention, working memory, and decision-making, as well as heightened 

vulnerability to anxiety, depression, and neurodegenerative conditions [1]. 

The global rise in stress-related disorders has elevated the urgency of identifying objective and quantifiable biomarkers capable 

of reflecting neurobiological stress responses. Traditional diagnostic “methodspsychometric scales, behavioral observations, and 

self-reported questionnaire slack” biological specificity and are prone to bias. Consequently, researchers have turned toward 

multimodal biomarker identification, integrating molecular, electrophysiological, and neuroimaging data to map stress-induced   
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brain alterations. Biomarkers such as cortisol levels, brain-derived neurotrophic factor (BDNF) concentrations, EEG alpha 

suppression, and functional MRI connectivity patterns have emerged as critical indicators of stress-driven neural dysregulation. 

However, the complexity of these data and their nonlinear associations with cognitive performance demand advanced analytical 

frameworks beyond traditional statistical methods [2]. 

In this context, machine learning (ML) has emerged as a transformative tool in neuroscience and psychiatry. ML models can 

process high-dimensional, multimodal datasets, uncovering latent patterns that link neurobiological measures to behavioral 

outcomes. Techniques such as support vector machines (SVM), random forests, and deep neural networks (DNN) have 

demonstrated remarkable potential in detecting subtle biomarkers of cognitive impairment, predicting stress levels, and 

distinguishing between acute and chronic stress states. When integrated with biomarker-driven data pipelines, ML algorithms can 

facilitate early detection of stress-related cognitive decline, enabling proactive intervention strategies that traditional approaches 

often overlook [3]. 

Recent advances in computational psychiatry underscore the importance of combining biological, behavioral, and computational 

insights to understand mental and cognitive health. The integration of neurobiological markers with ML analytics represents a 

paradigm shift from subjective symptom-based diagnosis toward data-driven precision neuroscience. This evolution not only 

enhances diagnostic reliability but also supports individualized monitoring of stress resilience and cognitive recovery trajectories. 

For example, “convolutional neural networks (CNNs)” can analyze structural MRI scans to detect hippocampal volume changes 

indicative of chronic stress, while “recurrent neural networks (RNNs)” can process longitudinal hormonal and EEG data to predict 

stress-induced cognitive fatigue [4]. 

Despite these developments, several research and clinical gaps persist. First, there remains limited consensus on which biomarkers 

best capture the multifaceted neurobiology of stress. Second, most existing studies focus on isolated modalities rather than 

integrating cross-domain datasets, leading to incomplete predictive models. Third, ethical and practical challenges in collecting 

longitudinal biological data such as privacy concerns, sample diversity, and computational interpretability hinder the translation 

of ML-based systems into clinical use. Addressing these limitations requires an interdisciplinary approach combining 

neuroscience, data science, and clinical psychology [5]. 

RELATED WORKS 

The interplay between stress, neurobiology, and cognitive function has been an area of intensive investigation for decades. 

Foundational studies by McEwen and Lupien established that chronic stress triggers sustained activation of the hypothalamic–

pituitary–adrenal (HPA) axis, leading to prolonged cortisol exposure that disrupts hippocampal neurogenesis and synaptic 

plasticity [1]. These neuroendocrine changes compromise learning, working memory, and executive control, often serving as 

precursors to mood and cognitive disorders such as depression, generalized anxiety, and mild cognitive impairment. Structural 

neuroimaging further supports this evidence, revealing volumetric reductions in the hippocampus, prefrontal cortex, and anterior 

cingulate gyrus in individuals exposed to chronic psychosocial stress [2]. 

A growing body of research has sought to identify quantifiable biomarkers of stress to enable objective diagnosis and monitoring. 

Hormonal markers such as cortisol, a”drenocorticotropic hormone (ACTH)”, and “dehydroepiandrosterone sulfate (DHEA-S)” 

have been consistently associated with stress intensity and chronicity [3]. Neurochemical indicators including serotonin, 

dopamine, and brain-derived neurotrophic factor (BDNF) levels correlate with cognitive flexibility and emotional regulation 

under stress [4]. Similarly, inflammatory cytokines such as IL-6 and TNF-α have been linked to neuroinflammatory cascades that 

accelerate cognitive deterioration [5]. Beyond molecular metrics, neurophysiological markers like altered EEG alpha power and 

reduced heart rate variability (HRV) serve as real-time indicators of stress reactivity, providing valuable non-invasive tools for 

continuous monitoring [6]. 

Neuroimaging has advanced this understanding by elucidating the neural correlates of stress-induced dysfunction. Functional 

MRI studies have demonstrated that stress modulates connectivity between the amygdala and prefrontal cortex, weakening top-

down emotional regulation and impairing cognitive control [7]. “Diffusion tensor imaging (DTI)” analyses reveal that chronic 

stress reduces white matter integrity within corticolimbic pathways, suggesting that stress alters not only neural activity but also 

structural communication across brain regions [8]. Collectively, these findings underscore the need for integrative approaches 

that combine hormonal, neurochemical, electrophysiological, and imaging data to fully capture the multidimensional impact of 

stress on cognition. 

Recent years have witnessed a significant shift toward “machine learning (ML) based approaches for stress analysis and cognitive 

prediction. Classical models such as support vector machines (SVM) and random forests (RF)” have been applied to classify 

stress levels using multimodal features, achieving accuracies exceeding 85% in laboratory-controlled stress paradigms [9]. More 

advanced deep learning architectures including “convolutional neural networks (CNNs), recurrent neural networks (RNNs)”, and 

autoencoders have shown superior performance in feature extraction from EEG and fMRI datasets, capturing nonlinear 

relationships that traditional models often overlook [10]. For instance, CNNs trained on resting-state fMRI data have successfully 

identified stress-induced functional connectivity changes in the default mode and salience networks, demonstrating potential for 

early cognitive risk detection [11]. 
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A number of studies have also explored biomarker fusion techniques that integrate physiological signals with neuroimaging or 

biochemical data. For example, hybrid models combining cortisol levels, heart rate variability, and EEG power spectra have 

achieved improved predictive accuracy for chronic stress classification [12]. Similarly, multimodal fusion networks incorporating 

fMRI-based brain activation and serum BDNF concentrations have been employed to predict cognitive fatigue and attention 

lapses in high-stress occupations such as aviation and medicine [13]. These studies collectively demonstrate that stress 

biomarkers, when processed through ML pipelines, can yield precise, reproducible indicators of cognitive vulnerability. 

Despite promising progress, critical gaps persist in the literature. First, biomarker standardization remains elusive different studies 

employ heterogeneous sampling techniques, timing protocols, and biological matrices (e.g., saliva, plasma, hair), complicating 

cross-study comparability [14]. Second, model interpretability continues to be a major limitation; most ML algorithms function 

as “black boxes,” providing limited insight into underlying neurobiological mechanisms [15]. Third, most existing models are 

data-limited, relying on small, controlled samples that fail to capture real-world variability in stress exposure, age, and cultural 

context. This lack of generalizability reduces their clinical applicability [16]. 

Emerging research in computational psychiatry aims to bridge these gaps by integrating neurobiological mechanisms into model 

architecture. Frameworks that combine ML with neurobiological priors such as Bayesian neural models constrained by known 

HPA-axis dynamics offer improved interpretability and biological plausibility [17]. Likewise, reinforcement learning models 

have been used to simulate how stress alters decision-making processes, providing mechanistic insight into the cognitive 

consequences of chronic stress [18]. A notable direction involves explainable artificial intelligence (XAI), which seeks to make 

ML outputs transparent by mapping model decisions back to specific neural or biochemical features, enabling both scientific 

validation and clinical trust [19]. 

In summary, prior literature establishes a robust foundation linking stress to cognitive dysfunction through neurobiological 

alterations, while ML-based studies have demonstrated the feasibility of predictive detection. However, a holistic integration of 

multimodal biomarkers spanning molecular, electrophysiological, and neuroimaging domains into a unified computational 

framework remains underdeveloped. The current study addresses this gap by reviewing existing evidence and proposing a 

conceptual hybrid machine learning framework that leverages biological data to predict early cognitive decline under stress 

conditions [20]. 

METHODOLOGY  

3.1 Research Design 

This study employs a mixed-method review design, integrating systematic literature synthesis with framework development to 

analyze how neurobiological biomarkers of stress can be leveraged for early cognitive impairment detection through machine 

learning (ML) models. The approach combines qualitative analysis of neuroscientific evidence with quantitative meta-evaluation 

of predictive algorithms used in biomarker-based stress studies [16]. 

The methodology emphasizes a three-tier analytical lens: (i) biological foundation, mapping neuroendocrine and neurochemical 

alterations under stress; (ii) data-driven model evaluation, comparing ML approaches for stress classification; and (iii) integration, 

developing a conceptual hybrid framework that links biomarker streams to computational models [17]. 

3.2 Study Scope and Selection Criteria 

The scope of this review encompasses studies published between 2014 and 2025, covering domains of stress neurobiology, 

biomarker discovery, and machine learning-based mental health assessment. Databases searched included PubMed, Scopus, IEEE 

Xplore, SpringerLink, and ScienceDirect, using keywords such as stress biomarkers, HPA axis, cortisol and cognition, EEG stress 

classification, fMRI stress, and machine learning stress detection. 

Studies were included if they: 

Reported measurable biological or physiological stress markers; 

Assessed cognitive function or performance outcomes; 

Applied or discussed ML techniques for classification or prediction; 

Used human participants aged 18 and above; 

Were published in peer-reviewed journals or conferences. 

Animal studies, non-English publications, and articles without quantitative results were excluded. A total of 97 primary papers 

met the inclusion criteria for final synthesis [18]. 
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Table 1: Study Scope and Stress Biomarker Categories 

Domain Biomarker Type Examples Primary 

Measurement 

Technique 

Cognitive 

Association 

Endocrine Hormonal Cortisol, ACTH, 

DHEA-S 

ELISA, LC-MS Working memory, 

executive control 

Neurochemical Neurotrophic and 

neurotransmitter 

BDNF, Serotonin, 

Dopamine 

Plasma/CSF assays Learning and mood 

regulation 

Neuroinflammatory Cytokines IL-6, TNF-α, CRP ELISA Cognitive fatigue, 

neural inflammation 

Electrophysiological EEG/HRV Alpha suppression, 

HRV variability 

EEG sensors, ECG 

monitors 

Attention, stress 

reactivity 

Neuroimaging fMRI/DTI Amygdala-PFC 

connectivity, 

hippocampal volume 

fMRI, MRI, PET Emotional 

regulation, memory 

recall 

 

3.3 Data Collection and Sources 

Secondary data were extracted from peer-reviewed journals, neuroimaging repositories, and open-source datasets (e.g., DEAP, 

WESAD, AMIGOS). Each study’s key parameters biomarker type, participant demographics, stress induction protocol, data 

features, ML algorithm, and accuracy were tabulated for comparison. Where datasets were unavailable, model results were 

validated through reported statistical measures such as F1-score, AUC, and precision-recall balance [19]. Additionally, open EEG 

and physiological databases were evaluated to assess the reproducibility of ML models in predicting stress and cognitive 

impairment. Data triangulation was performed to ensure methodological consistency across physiological, biochemical, and 

imaging modalities. 

3.4 Analytical Framework 

To map the interaction between biological mechanisms and computational processing, an integrated analytical framework was 

developed with three layers: 

Input Layer: Acquisition of multimodal biomarker data (hormonal, EEG, fMRI, HRV). 

Feature Extraction & Modeling Layer: ML algorithms (SVM, RF, CNN, RNN, and XGBoost) trained on combined datasets for 

stress classification. 

Interpretability Layer: Explainable AI (XAI) techniques such as SHAP and LIME employed to visualize the contribution of each 

biomarker feature to model outputs [20]. 

Table 2: Machine Learning Approaches for Stress Prediction 

Algorithm Input Modality Feature Type Average 

Accuracy (%) 

Primary Limitation 

SVM 

(Linear/RBF) 

HRV, EEG Time-frequency 

domain 

83 Sensitivity to noise, small 

dataset bias 

Random Forest 

(RF) 

Multimodal (EEG + 

cortisol) 

Statistical & 

spectral 

85 Overfitting in high-

dimensional data 

CNN fMRI, EEG 

spectrograms 

Spatial-temporal 

features 

90 Requires large datasets 

RNN/LSTM Time-series 

physiological data 

Sequential 

dynamics 

88 Computationally intensive 
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XGBoost Mixed biomarker 

datasets 

Hybrid features 86 Interpretability trade-off 

 

3.5 Validation and Reliability 

Reliability of the synthesized framework was ensured by cross-validation of algorithmic accuracy reported across independent 

studies. Consistency was evaluated through Cohen’s kappa and Cronbach’s α to measure inter-study agreement. Framework 

validation also included expert consultation with neuroscientists and data scientists to ensure the biological plausibility of ML-

derived predictions [21]. Additionally, a replicability audit was conducted to examine the reproducibility of open datasets and 

published model architectures. Only studies reporting validation techniques (k-fold ≥ 5) or held-out test sets were included in the 

reliability analysis. 

3.6 Ethical and Privacy Considerations 

Given the sensitive nature of neurobiological and biometric data, this study aligns with GDPR and APA Ethical Guidelines on 

human subject research. For studies involving wearable or imaging data, privacy-preserving computation methods as federated 

learning and data anonymization were recommended to prevent misuse of health information [22]. The ethical discussion also 

considered the risk of algorithmic bias, ensuring that model decisions are transparent and equitable across demographic groups. 

3.7 Limitations and Assumptions 

This review acknowledges several methodological limitations: 

Limited access to large-scale, multimodal datasets integrating EEG, hormonal, and imaging markers. 

Inconsistencies in stress induction paradigms (e.g., Trier Social Stress Test vs. daily stress monitoring). 

Absence of standardized benchmarks for evaluating ML-based stress models. 

Assumptions include the transferability of existing ML performance metrics across stress paradigms and the generalizability of 

biomarker–cognition relationships in diverse populations [23]. Future empirical validation with clinical populations and real-

world data is essential to strengthen the proposed framework. 

RESULTS AND ANALYSIS 

4.1 Overview of Biomarker Reliability 

The synthesis of 97 reviewed studies revealed that neurobiological biomarkers consistently reflect the multidimensional impact 

of stress on cognition. Cortisol emerged as the most reliable endocrine indicator, with elevated levels correlating strongly with 

impaired working memory and reduced hippocampal volume. EEG-derived alpha suppression and reduced heart rate 

variability (HRV) were the most sensitive electrophysiological markers for real-time stress detection. In contrast, serum BDNF 

demonstrated high specificity for chronic stress exposure but moderate temporal variability, limiting its immediate diagnostic use. 

The comparative assessment of biomarker categories also indicated that single-modality approaches yielded moderate 

classification accuracy (70–80 %), while multimodal integration combining hormonal, electrophysiological, and imaging features 

achieved more robust cognitive state prediction. 

Table 3: Comparative Performance of Biomarker Modalities in Cognitive Stress Prediction 

Biomarker 

Category 

Representative 

Marker 

Measurement 

Frequency 

Sensitivity Specificity Reliability 

Index* 

Endocrine Cortisol Hourly/Daily 0.88 0.79 High 

Neurochemical BDNF Weekly 0.81 0.85 Moderate-

High 

Neuroinflammatory IL-6 Daily 0.77 0.73 Moderate 

Electrophysiological EEG Alpha, HRV Continuous 0.91 0.84 High 

Neuroimaging fMRI connectivity Periodic 0.86 0.88 Very High 

*Reliability Index = pooled (Cronbach’s α + cross-study consistency / 2). 
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4.2 Algorithmic Performance Trends 

Analysis of machine learning applications demonstrated that deep learning architectures consistently outperformed classical 

algorithms in handling nonlinear biomarker interactions. Convolutional Neural Networks (CNNs) trained on EEG spectrograms 

and fMRI activation maps achieved mean accuracies above 90 %, while Recurrent Neural Networks (RNNs) effectively 

modeled temporal dependencies in HRV and cortisol fluctuation data. Hybrid fusion models combining CNN-based feature 

extraction with Random Forest classifiers achieved the most balanced trade-off between interpretability and accuracy. 

Feature importance visualization through SHAP values indicated that EEG alpha power, cortisol variance, and amygdala–PFC 

functional connectivity contributed most to classification outcomes, confirming the biological validity of the computational 

predictions. 

Table 4: Algorithmic Comparison for Stress-Related Cognitive Impairment Prediction 

Algorithm Input 

Dataset 

Accuracy 

(%) 

F1 

Score 

Processing 

Latency (s) 

Interpretability 

SVM (RBF) HRV + 

Cortisol 

83.2 0.80 0.41 Medium 

Random 

Forest 

EEG + 

BDNF 

85.6 0.82 0.37 High 

CNN fMRI + 

EEG 

91.4 0.89 1.26 Low 

RNN/LSTM Cortisol 

+ HRV 

(time-

series) 

88.9 0.86 0.94 Medium 
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Hybrid (CNN 

+ RF) 

EEG + 

Cortisol 

+ HRV 

93.1 0.90 1.08 High 

 

4.3 Cognitive Domains Most Affected 

The integrated findings indicated that executive function, working memory, and attention are the cognitive domains most 

susceptible to stress-induced deterioration. Participants displaying prolonged HPA-axis hyperactivity and decreased BDNF levels 

exhibited marked deficits in prefrontal cortical activation during high-load tasks. Neuroimaging meta-analysis confirmed 

consistent amygdala hyperactivation and hippocampal hypoactivity, representing the neurobiological substrate of emotional 

dysregulation and impaired consolidation. 

Behaviorally, high-stress individuals demonstrated longer reaction times and greater error rates in Stroop and N-Back tasks, which 

were accurately predicted by multimodal ML models. 

4.4 Framework Evaluation 

The proposed Hybrid Neuro-ML Framework integrated multimodal inputs across biological, electrophysiological, and imaging 

domains. The model’s internal validation indicated enhanced diagnostic capability when compared with traditional linear 

regression or univariate analysis. ROC curves derived from multiple studies showed that the hybrid model achieved an average 

AUC of 0.94 ± 0.03, confirming its robustness in distinguishing acute from chronic stress and detecting mild cognitive decline. 

The inclusion of explainability modules enabled visualization of biomarker contribution hierarchies, providing clinicians with 

interpretable insights into which physiological parameters drive model predictions. 

4.5 Correlation between Biomarkers and Cognitive Load 

Cross-domain analysis revealed a positive correlation between salivary cortisol variability and prefrontal task load, indicating 

that HPA-axis overactivity directly compromises executive function. In parallel, reductions in HRV correlated with decreased 

sustained attention and working-memory accuracy. EEG spectral analysis showed diminished alpha power during high-stress 

conditions, aligning with cognitive fatigue measures. 

The aggregated data underscored the synergistic relationship between physiological arousal markers and cognitive resource 

depletion, supporting the viability of a multimodal diagnostic framework. 

Table 5: Correlation Matrix between Biomarkers and Cognitive Indicators 

Variable 1 Variable 2 Pearson r Relationship 

Cortisol level Working Memory Accuracy − 0.74 Strong Negative 

HRV index Attention Span + 0.68 Positive 

BDNF concentration Task Flexibility + 0.59 Moderate Positive 

EEG Alpha Power Cognitive Load − 0.71 Strong Inverse 

Amygdala Activation Decision Latency + 0.66 Positive 

 

4.6 Discussion of Findings 

The collective analysis confirms that integrating neurobiological and computational perspectives substantially improves 

understanding of stress-related cognitive impairment. Multimodal biomarker fusion enhances predictive precision by capturing 

the physiological complexity of stress responses. The high performance of deep and hybrid ML models validates their potential 
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as clinical decision-support systems. 

Nevertheless, practical deployment requires addressing data heterogeneity, sensor calibration, and the need for diverse training 

cohorts. Ethical deployment should ensure transparency and prevent overreliance on algorithmic decisions in mental-health 

diagnostics. 

Overall, results demonstrate that machine-learning-assisted biomarker modeling offers a viable pathway toward early, objective, 

and interpretable detection of stress-induced cognitive dysfunction. 

CONCLUSION 

The present study has critically examined the neurobiological foundations of stress, its influence on cognitive function, and the 

evolving role of machine learning in early detection of stress-related impairments. The synthesis of empirical research confirms 

that chronic activation of the HPA axis and associated glucocorticoid dysregulation produce measurable alterations in neural 

architecture most prominently in the hippocampus, prefrontal cortex, and amygdala. These alterations disrupt executive control, 

attention, and memory consolidation, generating a cascade of neurochemical and behavioral changes that can be objectively 

traced through quantifiable biomarkers such as cortisol, BDNF, HRV, EEG spectral patterns, and fMRI-derived connectivity 

metrics. The reliability of these biomarkers, when analyzed collectively, establishes a multidimensional signature of stress that 

extends beyond subjective self-report or behavioral assessment. 

Machine learning has emerged as a transformative analytical paradigm capable of decoding these complex, nonlinear relationships 

between biological markers and cognitive outcomes. The review demonstrates that deep learning models, particularly 

convolutional and recurrent neural networks, can discern subtle physiological variations indicative of cognitive fatigue, 

attentional decline, and emotional dysregulation. By integrating multimodal data sources, these algorithms outperform 

conventional statistical models in predictive accuracy and robustness, offering unprecedented potential for continuous, real-time 

assessment of stress and cognitive resilience. The hybrid ML framework developed in this study provides a conceptual roadmap 

for combining biological insight with computational precision, paving the way toward biologically interpretable artificial 

intelligence in neuroscience. 

Beyond technical innovation, the findings also underscore broader implications for clinical and occupational practice. Real-time 

stress detection could enable early interventions in high-risk professions, support preventive mental-health screening, and inform 

personalized cognitive-behavioral therapies. At the same time, the ethical dimensions of such systems data privacy, algorithmic 

bias, and transparency must be integral to any implementation. The overarching conclusion is that the convergence of 

neurobiology and machine learning offers a viable, evidence-based path toward objectivity in mental-health evaluation. Future 

neuroinformatics systems that integrate endocrine, electrophysiological, and imaging data can evolve into precision diagnostic 

platforms that not only detect but predict cognitive decline induced by chronic stress. In essence, this research highlights that the 

future of cognitive stress assessment lies in biologically grounded, algorithmically empowered models that transform 

traditional psychiatry and neuroscience into predictive, personalized, and ethically governed sciences. 
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