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ABSTRACT 

Diabetic retinopathy stands as one of the most common and severe complications affecting the eyes of people with diabetes, 

impacting roughly one-third of diabetic adults worldwide. The traditional approach of having ophthalmologists manually examine 

patients for DR screening proves to be extremely time-consuming, demands significant resources and remains inclined to human 

inconsistencies, which has created a demand for automated diagnostic tools that can deliver reliable results. This research work 

presents an automated system designed for multi-class diabetic retinopathy classification through various advanced deep learning 

methodologies including transfer learning, vision transformers and specifically by combining Contrast Limited Adaptive 

Histogram Equalization (CLAHE) preprocessing techniques with a fine-tuned Swin Transformer architecture. This methodology 

employs CLAHE to enhance image contrast during the preprocessing stage, followed by the implementation of the Swin 

Transformer model that handles feature extraction and classification tasks. The developed system is able to predict the level of 

Diabetic Retinopathy for five classes, thereby predicting a fundus image for multiclass classification with five classes: No 

Apparent DR, Mild Non-Proliferative DR, Moderate NPDR, Severe NPDR and Proliferative Diabetic Retinopathy. We utilized 

multiple datasets for both training and validation phases, conducting thorough evaluation through standard performance metrics 

including accuracy, recall, specificity and F1-scores. Our proposed model exhibited remarkable performance outcomes, achieving 

high validation accuracy together with strong recall rates when tested for various datasets. The system delivered outstanding 

classification performance while remarkably reducing false negative rates, which makes it particularly well-suited for medical 

screening applications where disease identification in early stage is crucial. The strategic integration of CLAHE preprocessing 

with the Swin Transformer architecture offers a highly effective solution for automated DR detection. Among various 

implementations of transfer learning techniques  EfficientNetB3 resulted in 94% weighted average recall and 94% accuracy. The 

proposed model achieved 96% weighted average recall and accuracy for eyePACs dataset and 99% weighted average recall and 

accuracy for APTOS blindness detection dataset. The model's computational efficiency positions it as a practical option for 

deployment in screening programs, especially within resource-limited healthcare settings where traditional screening 

infrastructure and specialized expertise may be scarce or unavailable. 
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INTRODUCTION 
Diabetic retinopathy represents one of the most serious eye complications that can develop in people with diabetes. This 

progressive disease of the retina occurs when prolonged high blood sugar levels damage the tiny blood vessels in the eye, leading 

to potentially vision threatening problems such as microaneurysms, hemorrhages and the growth of abnormal new blood vessels. 

The World Health Organization reports that roughly one in three adults living with diabetes shows some evidence of DR, and 

these numbers are climbing steadily in developing nations where access to proper diabetes care and screening remains limited. 

The diabetes epidemic itself continues to grow at a concerning pace worldwide. Data from the International Diabetes Federation 

reveals that the South-East Asia Region alone had about 87.6 million people with diabetes in 2019, a figure expected to reach 

approximately 115.1 million by 2030 [1] Along with this rise in diabetes, the proportion of people affected by diabetic retinopathy 

is also projected to increase from 11.3% in 2019 to 12.2% by 2030, underscoring the critical importance of developing effective 

screening and treatment strategies [1]. 

 

Currently, screening for diabetic retinopathy depends on trained eye specialists manually examining photographs of the retina 

taken during patient visits. While this remains the standard approach, it comes with considerable drawbacks: the process is slow, 

demands significant human expertise and time, and can vary based on the examiner's judgment and experience. Even trained 

screening staff can only correctly interpret retinal images about 85% of the time when deciding whether someone should be 

referred to an eye specialist. This means they make mistakes in roughly 15% of cases—sometimes missing conditions that actually 

need attention, and other times sending people for specialist appointments they don't really need [2]. The factor that makes early 

detection so crucial is that catching the disease early enough allows doctors to prevent vision loss in up to 90% of cases through 

timely treatment.  

 

Recent advances in machine learning can potentially overcome many limitations of traditional screening by offering consistent, 

unbiased, and fast diagnostic results. Automated systems powered by AI could prove especially valuable for early DR detection 
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in areas where access to eye care specialists is scarce. 

 

Our research introduces a novel approach that brings together sophisticated image enhancement methods with cutting-edge deep 

learning technology. We've developed a system that uses Contrast Limited Adaptive Histogram Equalization (CLAHE) to 

improve the quality of retinal images before analysis. These improved quality images are given to the Swin Transformer 

architecture to identify and classify different features in the images. The system can classify Diabetic Retinopathy into five 

different levels of severity: no visible signs of the disease, mild early-stage damage, moderate early-stage damage, severe early-

stage damage and advanced-stage disease where abnormal blood vessels begin to grow. 

 

This ability to classify DR into multiple categories goes well beyond simply detecting whether the disease is present or not. This 

specificity is crucial for choosing appropriate treatments and tracking how patients respond over time, making automated 

screening both more accurate and practically useful in clinical settings. 

 

Figure 1 depicts the continuous cycle of handling Diabetic Retinopathy, showing four key stages that work together in an ongoing 

process of prevention and care. The cycle starts with retinal imaging, where modern diagnostic tools capture detailed pictures of 

the eye to detect early changes. This leads to the second stage of early detection, where identifying DR at its onset enables doctors 

to intervene before serious damage occurs. The third stage focuses on disease management through appropriate treatments and 

regular monitoring to slow down or stop the condition from worsening. Finally, the fourth stage emphasizes preventing vision 

loss by implementing protective measures that help patients maintain their eyesight and quality of life. Rather than being a one-

time sequence, this cycle represents an ongoing, repetitive process that highlights the importance of continuous monitoring and 

intervention in managing diabetic retinopathy effectively. 

 
 

Figure 1. Cycle of Diabetic Retinopathy Management 

 

LITERATURE SURVEY 
2.1 Transfer Learning Approaches 

Mutawa et al. [3] proposed a DenseNet-121 architecture trained on the combined APTOS and EyePACS datasets, achieving a 

grading accuracy of 98.97%. Das et al. [4] utilized EfficientNetB4 on the EyePACS dataset, obtaining 79.11% accuracy. Ohri et 

al. [5] employed ResNet-50 on the APTOS dataset with 80.10% accuracy. Erciyas et al. [6] demonstrated exceptional performance 

using VGG19 on EyePACS and Messidor datasets, achieving perfect accuracy of 100% on both datasets. Patil et al. [7] applied 

ResNet-50 on the combined APTOS and EyePACS datasets, reaching 97.87% grading accuracy. 

 

2.2 Hybrid Learning Approaches 

Jabbar et al. [8] combined GoogLeNet and ResNet architectures on the EyePACS dataset, achieving 94.00% accuracy. 

Nahiduzzaman et al. [9] integrated CNN with Singular Value Decomposition (SVD) and Extreme Learning Machine (ELM) on 

Messidor2 and APTOS datasets, obtaining accuracies of 98.09% and 96.26% respectively. Mohanty et al. [10] employed VGG16 

with XGBoost on the APTOS dataset, achieving 79.50% accuracy. Dai et al. [11] utilized the SWIN transformer architecture on 

EyePACS, reaching 87.43% accuracy. 

 

Nahiduzzaman et al. [12] developed a Pyramidal Convolutional Neural Network (PCNN) combined with ELM on APTOS and 

EyePACS datasets, achieving accuracies of 97.27% and 91.78% respectively. Ma et al. [13] integrated Transformer with CNN 

on the IDRID dataset, obtaining 77.82% accuracy. Bala et al. [14] proposed a Transformer combined with CNN and residual 
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connections on APTOS and IDRID datasets, achieving accuracies of 98.60% and 98.90% respectively. Thomas et al. [15] 

developed a Triple CNN architecture with SVM on EyePACS, Messidor, and a private dataset, achieving 98.94% grading 

accuracy. 

 

2.3 End-to-End Learning Approaches 

Luo et al. [16] proposed a CNN incorporating local and long-range dependencies on EyePACS and Messidor datasets, achieving 

83.60% accuracy. Khan et al. [17] introduced Ddnet on the APTOS dataset with 97.00% accuracy. Ashvini et al. [18] combined 

Discrete Wavelet Transform (DWT) with CNN on DDR, EyePACS, and IDRID datasets, obtaining accuracies of 96.20%, 

93.50%, and 90.07% respectively. 

 

Jian et al. [19] developed Triple-DRNet on the APTOS dataset, achieving 92.08% accuracy. Li et al. [20] proposed a lesion-

attention pyramid architecture on Messidor and EyePACS datasets, reaching accuracies of 92.30% and 89.10% respectively. Yue 

et al. [21] designed an attention-driven cascaded network on APTOS and EyePACS datasets with accuracies of 83.40% and 

72.44% respectively. 

 

Imran et al. [22] integrated DWT with Dual CNN and residual blocks on Messidor2 and APTOS datasets, achieving accuracies 

of 80.00% and 92.00% respectively. Sunkari et al. [23] employed ResNet18 with Swish activation function on the APTOS dataset, 

obtaining 95.50% accuracy. Raiaan et al. [24] utilized ResNet10 on combined APTOS, IDRiD, and Messidor datasets, achieving 

98.65% accuracy. Kommaraju et al. [25] developed CNN with residual blocks on the DRR dataset, reaching 96.23% grading 

accuracy. 

 

The reviewed literature demonstrates significant diversity in methodological approaches, dataset utilization, and performance 

outcomes. Traditional CNN architectures show consistent performance ranging from 75% to 95% accuracy, with binary 

classification generally outperforming multi-class scenarios. Transfer learning approaches, particularly those incorporating 

attention mechanisms, demonstrate superior performance with up to 98% accuracy, suggesting the benefits of leveraging pre-

trained models for medical image analysis. 

 

METHODOLOGY 
Initial implementation is performed using two transfer learning techniques EfficientnetB3 and Resnet18 on the balanced eye 

disease classification dataset accessed through Kaggle. This is an almost balanced dataset with eye retina images of four 

categories: Normal, Cataract, Glaucoma and Diabetic Retinopathy. For eye diseases classification, EfficientnetB3 architecture is 

implemented which includes EfficientnetB3 (Functional) layer, followed by BatchNormalization, Dense, Dropout and Dense 

layers. Final layer of  eficientNetB3 model is replaced with BatchNormalization and 2 Dense layers. This implementation resulted 

in a total of 11,093,804 trainable parameters and achieved training accuracy and validation accuracy of 99.97% and 95.97% 

respectively.  

 

The confusion matrix and classification report output for EfficientNetB3 in classifying four eye conditions across 633 test samples 

is represented in Figure 2 and Figure 3 respectively. Diabetic retinopathy achieved perfect classification with 100% accuracy 

(165/165 cases), while cataract detection performed excellently with 96.2% accuracy (150/156 cases). Glaucoma classification 

showed good performance at 88.7% accuracy (134/151 cases), with some misclassifications as normal eyes. The classification 

report confirms an overall model accuracy of 94%, with diabetic retinopathy achieving perfect precision, recall, and F1-scores of 

1.00.  

 

Figure 2. Confusion Matrix of EfficientNetB3 

 

 

 

 
Figure 3. Classification Report of EfficientNetB3 

 

The EfficientNetB3 training was terminated early at epoch 32 out of the planned 100 epochs after 3 learning rate adjustments 
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with no performance improvement. The loss curves in Figure 4 for EfficientNetB3 represents rapid decrease from 7.0 to 0.3 

within 10 epochs, with the best model at epoch 29. Training accuracy quickly rose from 76% to near 100%, while validation 

accuracy reached 94% and stabilized as shown in Figure 5. The close alignment between training and validation metrics indicates 

good generalization without overfitting, with optimal validation performance at epoch 20.  

 
Figure 4. Training and Validation Loss of 

EfficientNetB3 

 
Figure 5. Training and validation accuracy of 

EfficientNetB3 

 

Final layer of  ResNet-18 model is replaced with 2 Dense layers. The ResNet-18 is a deep, 18-layer convolutional neural network 

(CNN) that uses residual blocks to improve performance and address the vanishing gradient problem. The architecture consists 

of an initial convolutional layer and max-pooling, followed by four stages, each composed of two identical residual blocks. In 

these stages, the number of filters doubles with each successive stage, while the feature map size is halved starting with residual 

blocks with 64 filters and maintains an output size of 56 x 56.  

The confusion matrix for Resnet18 given in  Figure 6 and Classification Report is given in Figure 7. It display 4-class eye disease 

classification results across 1,266 samples. Diabetic retinopathy (class 2) achieved perfect classification with 100% accuracy, 

while cataract (class 3) performed excellently with 306/316 correct predictions. Glaucoma (class 0) showed good performance 

but had some confusion with normal eyes (class 1). The model achieved 92% overall accuracy with F1-scores ranging from 0.87 

to 1.00 across all classes. 

Figure 6. Confusion Matrix of Resnet18 Figure 7. Classification Report of Resnet18 

 

The training and validation loss curves are represented in Figure 8 and Training and validation accuracy curves are shown in 

Figure 9 for ResNet18 architecture. Loss curves show training loss decreasing steadily from 0.85 to near 0.02 over 100 epochs, 

while validation loss stabilizes around 0.3-0.4 after initial improvement. Training accuracy rapidly increases from 65% to nearly 

100% and maintains high performance throughout training. Validation accuracy reaches approximately 92-93% and remains 

stable with minor fluctuations.  
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Figure 8. Training and Validation Loss of Resnet18 

 
Figure 9. Training and validation accuracy of 

Resnet18 

 

PROPOSED WORK 
The proposed methodology shown in Figure 10 follows a seven-stage pipeline for diabetic retinopathy multiclass classification. 

First, retinal images are collected from two datasets APTOS blindness detection dataset [26] and eyePACKs Diabetic Retinopathy 

dataset [27] from Kaggle. These images are then cropped using grayscale thresholding and resized to a standard 256×256 pixel 

format. Next, the images are split into their blue, green, and red color channels, with contrast-limited adaptive histogram 

equalization applied to each channel individually to  

 
Figure 10. Flow of Proposed work 

 

enhance image quality. The enhanced channels are then merged back together. The processed images undergo fine-tuning using 

a Swin Transformer architecture, followed by model training. Finally, the trained system performs real-time multiclass 

classification of diabetic retinopathy severity levels. The summary of training parameter configurations is given in Table 1. 

 

Table 1. Summary of Training Parameter Configurations 

Category Parameter Description Value 

Training 

Parameters 

Optimizer Learning Rate 1e-4 

Training Batch Size 32 

Validation Batch Size 32 

Training Data Split Ratio 0.7 

Total Training Epochs 40 

 

4.1 Performance measurements of Proposed work using APTOS Dataset 

The Figure 11 shows the training dynamics across 40 epochs using the proposed work with both loss curves and accuracy plots. 

The training and validation losses start high (around 1.0 and 0.7 respectively) and rapidly decrease during the first 10 epochs, 

eventually stabilizing around 0.1 with some fluctuations, including a notable spike around epoch 35.  

 
Figure 11. Training and Validation Loss Graph for APTOS Dataset 
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The accuracy curves demonstrate strong learning progress, starting from approximately 70% and quickly rising to plateau around 

98-99% accuracy for both training and validation sets by epoch 10. The close alignment between training and validation metrics 

suggests the model generalizes well without significant overfitting. 

 

The confusion matrix in the Figure 12 reveals excellent classification performance across all five classes with labels 0 to 4. Class 

0 shows perfect classification with 553 correct predictions and only 2 misclassifications, while classes 1, 3, and 4 demonstrate 

near-perfect performance with minimal confusion. Class 2 has the most samples (302) and shows strong performance with 298 

correct predictions and only 4 misclassifications, primarily confused with classes 1 and 4.  

 

 
Figure 12. Confusion Matrix using Proposed 

work for APTOS Dataset 

 

 

 
Figure 13. Classification Report using Proposed work for 

APTOS Dataset 

 

The classification report in Figure 13 quantifies the model's performance, achieving 99% overall accuracy across 1,088 total 

samples. All classes demonstrate high precision (0.96-1.00), recall (0.96-1.00), and F1-scores (0.97-1.00), with macro and 

weighted averages both reaching 0.98-0.99, indicating balanced performance across all classes regardless of class imbalance. 

 

4.1 Performance measurements of Proposed work using eyePACS Dataset 

The Figure 14 displays training dynamics over 25 epochs, showing both loss and accuracy curves. The training and validation 

losses start high (around 1.0 and 0.75 respectively) and decrease rapidly in the first 5 epochs, stabilizing around 0.1-0.2 with 

occasional fluctuations, including a notable validation loss spike around epoch 20. The accuracy curves demonstrate steady 

improvement from initial values around 67-80% to final performance plateauing near 96-98% for both training and validation 

sets. The close tracking between training and validation metrics indicates good generalization without significant overfitting. 

The confusion matrix given in Figure 15 reveals a highly imbalanced dataset with class 0 being dominant (5,158 samples) 

compared to other classes ranging from 131 to 1,078 samples. Class 0 achieves excellent performance with 5,047 correct 

predictions and relatively few misclassifications (75 to class 1, 35 to class 2). Classes 2 and 4 show strong diagonal performance, 

while classes 1 and 3 demonstrate more confusion, particularly class 1 with 51 samples misclassified as class 0. 

 
Figure 14. Training and Validation Loss Graph for proposed work using EyePACS Diabetic Retinopathy dataset 

http://www.verjournal.com/


 
VASCULAR & ENDOVASCULAR REVIEW 

www.VERjournal.com 

 

 

Minimizing False Negative Ratio in Automated Diabetic Retinopathy Detection 

56 

 

Figure 15. Confusion Matrix using EyePACS 

Diabetic Retinopathy dataset 

 

 

 

Figure 16. Classification Report using EyePACS Diabetic 

Retinopathy dataset 

 

 

The classification report given in Figure 16 confirms strong overall performance with 96% accuracy across all 7,008 samples. 

However, the class imbalance affects individual class performance, with class 1 showing the lowest metrics (precision: 0.84, 

recall: 0.88, F1: 0.86) while classes 0, 3, and 4 achieve excellent precision scores above 0.97. The weighted average (0.96 across 

all metrics) better represents the model's performance given the class imbalance, indicating robust classification capability despite 

the challenging data distribution. 

 

IMPLEMENTATION PLATFORM AND PERFORMANCE MATRICES 
The models were implemented on Google Colaboratory with the dataset stored in Google Drive for seamless access and efficient 

training utilizing TensorFlow and Keras frameworks with GPU support.  

FPR (Type I Error): False Positive Rate is the share of negative cases wrongly predicted as positive, calculated as FP / (FP + 

TN). In medical use, this means unnecessary alerts or treatments. 

FNR (Type II Error): False Negative Rate is the share of positive cases wrongly predicted as negative, calculated as FN / (FN 

+ TP). In healthcare, this means missed disease detection. 

Accuracy: “Ratio of the total number of images identified correctly to the total number of images taken for the classification”.  

It describes how accurately, the model is able to predict the output. For imbalanced dataset, only accuracy is not preferable.  

 

 

 

 

 

Recall: “Ratio between the number of Positive samples correctly classified as Positive to the total number of Positive samples”. 

It finds model’s ability to detect Positive samples.  

 

 

 

 

Ex. Whether a person is having cancer or not? Here, even if a person has cancer and detected as not having cancer then the 

person’s life can be in danger. False Negative must be minimized in the health domain. The higher the recall, the more positive 

samples are detected as positive. Whenever False Negative is important, recall is preferable. 

 

Recall is a critical performance metric in medical applications, often more important than other metrics like precision or overall 

accuracy. In medical diagnosis, a false negative, an indication of no disease when a disease is actually present, can be troubling. 

Failing to detect a disease like can lead to delayed treatment and potentially fatal outcomes. High recall ensures that most patients 

with a condition are identified, even if it means some false alarms. Recall is prioritized because missing a serious disease is far 

more dangerous than a false positive that leads to additional testing. In Diabetic Retinopathy high recall is an important parameter 

to save vision of patients. 

 

LIMITATIONS AND FUTURE DIRECTIONS 
This study demonstrates promising results, yet several limitations warrant consideration. The interpretability of deep learning 

models remains challenging, as the "black box" nature of neural networks can hinder clinical adoption. Clinicians require 

transparent decision-making processes to validate diagnostic recommendations. Although multiple datasets were utilized, the 

model's generalizability could be enhanced through larger, more diverse, and multi-centric datasets representing various ethnic 

populations, imaging devices, and clinical settings. Additionally, validation in real-world clinical environments with varying 

image quality and patient populations requires further investigation. 

 

Future research will focus on integrating explainable AI techniques such as Grad-CAM and attention visualization to enhance 

model transparency and clinical acceptance. Incorporating multimodal clinical data—including patient demographics, medical 

history, and laboratory measurements—presents an opportunity to improve diagnostic accuracy. Advanced domain adaptation 

Accuracy = TP + TN / (TP + TN + FP + FN) 

           = True Detected / All Detected 

       Recall = TP / (TP + FN) 

        = TP / Total Positive 
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techniques should be explored to enhance model performance across different imaging devices and patient populations. Edge 

computing and mobile deployment solutions are crucial for translating research into practical clinical tools, particularly for point-

of-care diagnostics in resource-limited settings. Longitudinal analysis capabilities could enable prediction of disease progression 

and treatment response for personalized treatment planning. The long-term vision encompasses developing comprehensive AI-

powered ophthalmic care systems that integrate seamlessly into clinical workflows through continued collaboration between 

computer scientists, ophthalmologists, healthcare providers, and regulatory bodies. 

 

CONCLUSION 
This research introduces a new way to automatically detect diabetic retinopathy by combining CLAHE image enhancement with 

the Swin Transformer architecture. Our system performs remarkably well at classifying DR into multiple stages, showing strong 

results in accuracy, sensitivity, and specificity. It can tell the difference between No Apparent DR, Mild NPDR, Moderate NPDR, 

Severe NPDR, and Proliferative DR, giving doctors the detailed information they need to make informed treatment decisions. 

The automated system we've developed could really change how diabetic retinopathy screening is done, especially in places 

where resources are tight. Because it doesn't require a lot of computing power, it can work anywhere from big city hospitals to 

small rural clinics, and it could easily be added to telemedicine systems. Our work shows that combining older image processing 

methods with newer deep learning technology can be highly effective in medical applications. 

 

This system tackles a major public health problem by offering a practical solution for screening more people as diabetes continues 

to spread worldwide. Being able to catch DR early could prevent vision loss in up to 90% of cases, which would be a huge win 

for both patients and healthcare systems everywhere. By bringing together CLAHE preprocessing and Swin Transformer 

technology, we've created a reliable and practical tool that could help improve eye health around the world and move AI-based 

medical diagnosis forward. High recall values are received by the proposed method, which is critically important in medical 

image diagnosis because it directly relates to the model's ability to identify all true positive cases and minimizing the false negative 

rate. 
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