

The Prevention of Ventilator-Associated Pneumonia in Critical Care: Aligning with SDG 3

Ammar Jabbar Majeed¹, Col.Pol.Kallaya Techasatian², Dr. Selva Ganapathy Muthusamy³, SENTHUR N S⁴

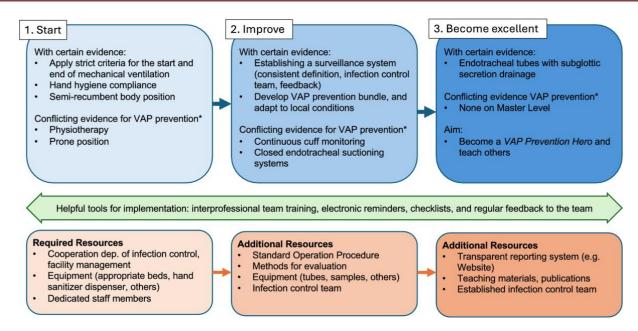
¹M.B.Ch.B; F.I.C.M.S (Medicine), DM (cardiology); Assistant professor, Department, of Interventional Cardiology, Medical College, University of Kufa, Iraq,

ammarjabbar48@gmail.com
2Assistant Professor, Faculty of Nursing, Shinawatra University, Thailand kullaya.t@siu.ac.th
0009-0006-3977-8583

3Associate Professor, Dept. of Chemistry, Saveetha Engineering College (Autonomous), Thandalam Chennai selva.chemist5@gmail.com

4Department of Mechanical engineering , ew Prince Shri Bhavani College Of Engineering & Technology, Chennai. senthur.ns@gmail.com

ABSTRACT


Ventilator-Associated Pneumonia (VAP) remains one of the most common and severe healthcare-associated infections in intensive care units (ICUs). This study reviews best practices for preventing VAP, focusing on evidence-based strategies and their effectiveness in reducing morbidity, mortality, and healthcare costs. Literature findings reveal that VAP affects 10–30% of ventilated patients, prolongs ICU stays by 7–9 days, increases treatment costs by \$10,000–\$40,000 per case, and contributes to mortality rates of 20–50%. Risk factors are also the vulnerabilities of the patient, the mechanical ventilation period, the weak infection control practices, and the development of biofilm on endotracheal tubes. The conventional preventive strategies including hand hygiene, elevation of head-of-bed, oral hygiene involving the use of chlorhexidine and aseptic suctioning are of paramount need. Nevertheless, VAP prevention bundles, which entail a combination of interventions have had the most success in the reduction of infections and the improvement of patient outcomes, however. Such a study underscores how and why a multidisciplinary collaboration focused on adherence to all regulations and proper staff education are key to sustainable VAP incidence reduction. Preventing this is more important than treatment, and it has multiple advantages in terms of patient safety, antimicrobial stewardship, and healthcare efficiency.

KEYWORDS: Ventilator-Associated Pneumonia (VAP), Critical care, Infection prevention, Prevention bundles, Patient safety, Antimicrobial stewardship, SDG 3 (Good Health and Well-being)

How to Cite: Ammar Jabbar Majeed, Col. Pol. Kallaya Techasatian, Selva Ganapathy Muthusamy, Senthur N S, (2025) The Prevention of Ventilator-Associated Pneumonia in Critical Care: Aligning with SDG 3, Vascular and Endovascular Review, Vol.8, No.3s, 365-373.

INTRODUCTION

Ventilator-Associated Pneumonia (VAP) is the most frequent and severe health care-related infections (HAIs) in intensive care units (ICUs) in patients under mechanical ventilation. VAP is pneumonia that ensues 48 hours or later after endotracheal intubation, and is a notable contributor to patient morbidity, extended hospital stays, surplus healthcare expenditure and even mortality. Although there have been developments in critical care, VAP has proved to be a challenging issue, and therefore prevention of VAP is a top priority in the contemporary health sector. Video-associated pneumonia develops in a multifactorial manner and may be caused by aspiration of bodily liquids, endothelialization of endotracheal tubes, poor host defense mechanisms, and extended mechanical intubation (Alecrim et al. 2019). There is also an increased risk owing to the high-risk setting of the ICUs and invasive procedures. Recent studies indicate VAP incidences in 9-27 percent of patients under mechanical ventilation, a development that increases the need to have effective preventive methodologies.

The VAP has a multifactorial pathogenesis. Due to the long-term intubation, pathogenic organisms can colonize the oropharynx and trachea, there is the possibility of micro-aspiration of contaminated secretions, and the development of biofilms on endotracheal intubation tubes. Other risk factors involve administration of broad spectrum antibiotics, immunosuppression, lying in supine position, poor oral hygiene, and ineffective infection prevention precautions. Critically, the emergence of multidrug resistant (MDR) organisms has complicated the clinical aspect of treating VAP, therefore, increasing the importance of prevention to an even greater degree relative to treatment. VAP has a particularly pronounced burden in low- and middle-income countries where fewer resources are available, fewer healthcare professionals are employed, and there are no strict measures concerning infection control (Coppadoro et al. 2019). Nevertheless, VAP remains to be a significant risk to patient safety even in highly-developed healthcare systems, which underscores the necessity of profound quilient vigilance in adhering to the prevention strategies. Preventive interventions have been formulated and proved over the years and their numbers are quite large. Practices (evidence-based), including strict hand hygiene, raising the head of the bed (30-45 degrees), sedation vacation and readiness-to-extubate assessments, oral decontamination with chlorhexidine, subglottic suctioning, appropriate cuff pressure maintenance of the endotracheal tube and minimum length of mechanical ventilation, have been found to substantially reduce VAP rates. There have been striking reductions in infection rates due to adoption of bundles of evidence-based measures that come in standardized packages of care.

Today, a lot of evidence-based practices have been implemented to minimise the occurrence of VAP over the last 20 years. These are keeping the hands clean, keeping the head of the bed elevated, interrupting sedation on a daily basis, oral cleaning with chlorhexidine, subglottic drainages, and a reduced time of ventilation, wherever possible. Moreover, the VAP prevention bundles greatly help prevent the infection: a package of combined interventions has demonstrated their significant effectiveness in terms of patient outcomes. Prevention of VAP is both a clinical issue and also the organizational and ethical obligation. Implementation of effective preventive strategies involves the collaboration of physicians, nurses, respiratory therapists, and infection control groups (Ehrmann et al. 2023). With attention on following best practices, the rate of infections can decrease dramatically and patient safety levels can be improved as well as healthcare resources be used more efficiently. This paper investigates the evidence-based approaches to prevention of ventilator-associated pneumonia, with an aim of synthesizing the evidence-based methods of prevention, problematic implementation issues, and possible improvements in the area of critical care specialist

practice.

RATIONALE OF THE STUDY

Ventilator-Associated Pneumonia (VAP) is still one of the most prominent hospital-acquired infections in the intensive care units (ICUs), despite the current changes in the field of medical technology and infection control. Its correlation with the long-term use of mechanical breathing machines, heightened antibiotics result in hospitalization, the extended duration of hospitalisation, and expenses surrounding patient healthcare management makes it a significant patient management domain. Mortality that is associated with VAP can be up to 20-50 per cent hence the dire necessity of preventive measures. Even though a number of guidelines and preventive measures have been postulated around the world, variations in practice and inconsistency in following them can restrict their effectiveness. The insufficient supply of medical staff, low adherence to infection precaution, and insufficient education of healthcare providers still remain the challenges in many health facilities, especially in the resource-poor environment (Mehta and Bhagat, 2016). The existence of these barriers justifies the need to increase the strength of evidence-based best practices in order to guarantee safety of patients and achieve higher clinical outcomes. Besides, rising resistant strains of pathogens, such as multidrug-resistant (MDR) pathogens, have complicated the management of VAP, thus the importance of prevention is greater than curation. The preventive strategies will not only decrease the chances of becoming infected but also help to eliminate the use of antibiotics in cases when they are not really necessary leading to the issue of antimicrobial resistance.

Preventive Strategies

Before Intubation

Non-invasive positive pressure ventilation Decolonization

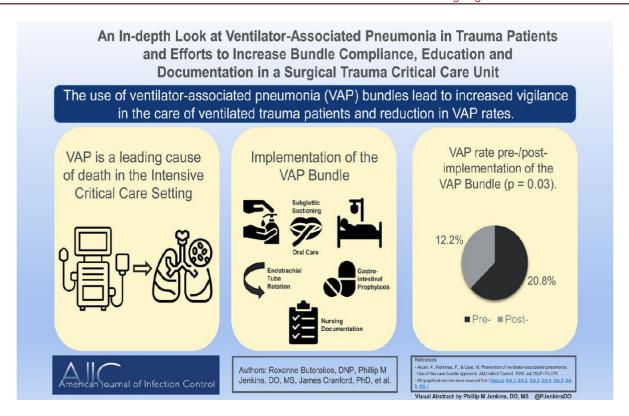
Probiotics

Early enteral feeding

Restrictive transfusion threshold

During Intubation

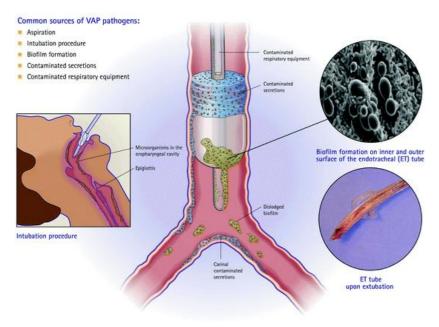
Anti-microbial coated endotracheal tubes Low Tidal volume ventilation Use of Prophylactic antibiotics Nebulized Antibiotics



After Intubation

Head of Bed elevation Sedation holiday Subglottic suctioning Early Mobilization Post pyloric feeding

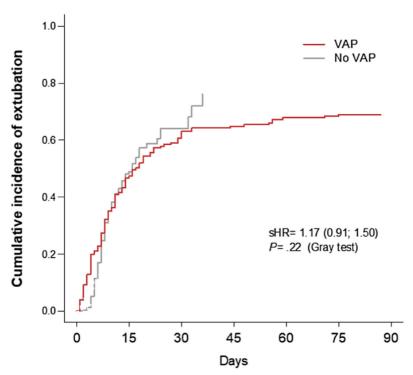
The research significance is based on the fact that it provides evidence-based best practices in the prevention of VAP and makes an emphasis on their applicability in everyday clinical practice. This will help in the research in identifying the best interventions to be carried out by the healthcare professionals, and some of these interventions include head-of-bed elevation, oral hygiene, sedation management and VAP prevention bundles, which will ensure the healthcare professionals adopt standardized and consistent practices. The study also emphasizes that efficient cooperation between nurses, physicians, and respiratory therapists, in general, should be multidisciplinary and is one of the effective strategies to achieve successful implementation (Alecrim et al. 2019). The rationale of the given research is following its ability to decrease morbidity and mortality related to VAP, improve the quality of patient care, and effective utilization of healthcare resources. Enhancement of preventative practice will not only enhance the safety of patients in ICUs, but will support the larger-scale objectives of infection management and antimicrobial stewardship within health care systems across the world.


VAP is still a most topical question of intensive care medicine. Although significant improvements have been made in critical care technology and structure of infection control VAP is the main contributor of healthcare attributed infection resulting in high levels of patient morbidity, mortality and medical costs. The research indicates that the patients receiving VAP spend a longer time in their hospital stays averagely being 7-9 days and the cost of treating such a patient increases by close to 40%. The mortality rate that it is associated with and available between 20% and 50% testifies to the high severity of this condition and explains the necessity of focusing prevention-focused studies (Ehrmann et al. 2023). This study will narrow the gap between evidence and clinical practice by systematically reviewing best practices on VAP prevention in order to identify ways to bridge this gap. It underlines the necessity of the multidisciplinary approach of nurses, physicians, and respiratory therapists and underlines the role of ongoing education and close compliance with stringent policies on infection control.

LITERATURE REVIEW

3.1 Overview of Ventilator-Associated Pneumonia (VAP)

Ventilator-Associated Pneumonia (VAP) is a severe hospital acquired illness that acts on patients who have been artificially ventilated over 48 hours. It is one of the most prevalent problems in intensive care units (ICUs) and it leads to considerable morbidity, extended hospital length of hospitalization, more expenditures within healthcare, and even mortality. Clinically, VAP can be described by the presence of a new or progressing pulmonary infiltrate that is accompanied by indicators of an infection (high temperature, purulent sputum, presence of pathogenic microbes in material extracted by bronchoscope) (Burja et al. 2018). This can be sub-divided into early-onset VAP, which is acquired within the first four days of mechanical ventilation, and late-onset VAP, which develops into five or more days and is often contributing to multidrug-resistant pathogens like Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus. VAP is a complex multifactorial disease with regard to pathogenesis. The best mechanism it can provide is the micro-aspiration of contaminated secretions of the oropharynx or gastrointestinal tract that moves around the inside of the endotracheal tube cuff, and into the lower respiratory tract.


The presence of biofilm on the inner surface of endotracheal tube acts as a pool growth of pathogens making it hard to eradicate. Additional factors that contribute to mechanisms of development are impaired mucociliary clearance with the tube, long term mechanical ventilation time, sedation, and patient factors that include chronic lung disease, diabetes, or immunosuppression. The

overall prevalence of VAP is 10-30 percent of the total number of patients on mechanical ventilation, with more patients in low-income and middle-income countries developing VAP because preventive measures are not strongly implemented. The financial impact of the disease is huge, with VAP stretching on the average ICU stays by a week or more costing \$10,000-40,000 per patient. The mortality rate caused by VAP is high (20-50 percent), and it depends on the magnitude of illness and invading pathogens. These tragic numbers underline the necessity of prevention because VAP can be largely prevented by best practices (Spalding et al. 2017). antibiotics ands can highly contribute to patient safety by reducing the risk of infection, and limit overreliance on broad-spectrum antibiotics and combat against antimicrobial resistance.

3.2 Clinical Impact of Ventilator-Associated Pneumonia

VAP is one of the most dreaded complications in an intensive care unit due to its serious clinical implication in terms of morbidity and mortality. It is attributed to case related morbidity, extended stay, medical expenses, and high mortality. Patients with VAP tend to remain very long on the mechanical ventilators usually taking another 7-9 days than the non-infected patients. Given such a long-lasting ventilator-assisted support, this lags the healing process and fastens consequences such as ventilator-induced lung injury, sepsis, and multiple-organ dysfunction. A VAP-related mortality rate is of special concern (Le Pape et al. 2022). Despite the frequent presence of comorbidities in the patients, it is known that VAP has an independent mortality risk, estimated to be between 20 and 50 percent dependent-deaths. This is even heavier when the infections are caused by multidrug-resistant (MDR) organisms, where the treatment is restricted or the outcome tends to be worse. This upholds the idea of preventing as preventive measures are very capable of lessening VAP-related deaths.

Economically, VAP is costly as it strains the financial system of any healthcare system globally. The condition results in more use of diagnostic procedures, imagaging, laboratory examination and broad spectrum antibiotics increasing the hospital expenses. The incremental costs of treating one case of VAP are estimated at between 10 000 and 40 000 in high-income countries; these amounts put significant pressure on the already limited resources of low- and middle-income settings and could lead to critical stock-outs of essential medicine. VAP affects health care delivery on an institutional basis as well as the individual patient. Infection rates inhibit hospital quality indicators, make the job of the healthcare providers difficult and can lead to penalties or loss in reputation among institutions that are unable to meet the infection control indicator benchmarks. Besides, the broad-spectrum of an antibiotic used in VAP cases is one of the causes of the worldwide epidemic of antimicrobial resistance, worsening treatment and endangering the patient (Gerard et al. 2024). The effects of VAP on clinical outcomes are complex and include extended ICU length of stay, worse mortality, increased medical expenditures, and added resistance to antimicrobes. These issues emphasize the significant role of focusing on prevention methods as one of the central topics in the intensive care management to guarantee the safety of a patient and provide better results.

3.3 Risk Factors Contributing to VAP Development

Ventilator-Associated Pneumonia (VAP) develops as a result of an interaction between a set of patient-, procedure- and environmental factors. Risk factors associated with the patient are old age, diseases e.g., diabetes mellitus, chronic obstructive lung disease (COPD), and relatives that compromise the immune system. Critically ill patients are at a significantly vulnerable position due to the compromised physiological defence system and comorbid conditions that predispose the patients to an infection upon introduction of mechanical ventilation. Some of the most relevant causes of risk are the procedure-related risks. The duration of mechanical ventilation is directly linearly connected to VAP-associated risk because the longer patients are on the mentation and the more their risk of bacterial colonization and following infection increases (Wu et al. 2019). Adverse

management of endotracheal tube cuff pressure can contribute to micro-aspirations of the contaminated secretions into the lower respiratory tract due to emergency intubations, recurrent intubations, and poor treatment of the endotracheal tube cuff pressure. To a similar extent biofilm growth on the interior surface of endotracheal tubes forms an unshifting source of pathogens that cannot be easily removed or killed by antibiotics. The use of sedation and paralyzing medications also poses great risks since the cough reflexes can be inhibited and even the mucociliary clearance.

Prevention Strategies Pathogenesis VAP Bacterial colonization Routine mouth care Appropriate hand cleansing (oropharynx, stomach) Wear gloves when handling secretion Avoid intubation Strict re-intubation Shorten duration of MV Aspiration or inhalation of Suction oropharynx regularly contaminated secretions Limit ventilator circuit changes Drain ventilator circuit condensate Elevate head of bed

The environmental and healthcare related ones are also important. Inadequate compliance with hand hygiene and infection control behaviour of the medical workers enables patient to patient cross-contamination. Overpopulation, insufficient staffing of ICUs, and scarce access to special equipment like subglottic suctioning tube increases the infection rates especially in the low-resource countries. Moreover, the constant intake of antibiotics with a wide spectrum of action will result in the colonization by multidrug-resistant (MDR) organisms that are harder to treat once VAP has occurred (Walgaszek et al. 2016). These risk factors interact to show that VAP is not the result of one mechanism but a result of a multiplicity of weaknesses in the patient, procedures, and the health care vertices. Determining and managing these risk factors is key to the effective development of pre-emptive prevention approaches to VAP incidence and severity.

Ventilator- associated pneumonia

Table: Clinical Impact of Ventilator-Associated Pneumonia (VAP)

Clinical Parameter	Impact of VAP
Morbidity	Prolonged duration of mechanical ventilation (7–9 additional days), delayed recovery, higher
	rates of sepsis and multi-organ dysfunction
Mortality	Attributable mortality ranges from 20% to 50%; higher with multidrug-resistant (MDR)
	pathogens
Length of Stay	Extended ICU stay by 7–9 days and hospital stay by up to 2–3 weeks
Healthcare Costs	Additional cost estimated between \$10,000 – \$40,000 per patient in high-income countries
Antibiotic Use	Increased reliance on broad-spectrum antibiotics, promoting antimicrobial resistance
Institutional Impact	Increased workload for healthcare providers, compromised hospital quality indicators, and risk
	of penalties due to poor infection control performance

3.4 Traditional Preventive Strategies for VAP

The issue of Ventilator-Associated Pneumonia (VAP) avoidance has been on priority in intensive care unit and over the years various conventional approaches have been devised to decrease its occurrence. These reduce bacterial colonization, aspiration, and ensuring optimal infection control measures are practised at the ICU. The stringent hand hygiene and infection control measures to healthcare providers are among approaches that are considered to be the keys. The frequent use of alcohol-based hand rubs and the correct use of gloves can prevent transmission of pathogens between patients since cross-contamination is one of the key modes of infection. The aspect of oral care and decontamination are also at the center of VAP prevention (Alecrim et al. 2019). The oropharynx colonization with pathogenic bacteria plays a major role in delaying the development of pneumonia; thus, regular oral cleaning through antiseptic, especially the use of chlorhexidine, can be effective in decreasing the incidence of VAP by lowering the number of bacteria in the oropharynx. In close connection with oral care, the management of an endotracheal tube is of prime importance. A cloud pressure is monitored and secretions suctioned frequently to avoid micro-aspiration of contaminated secretions into the lower respiratory system. There is further recommendation of the use of subglottic secretion drainage endotracheal tubes as a strong preventive tool.

Possible ventilator-associated pneumonia - criteria of IVAC plus possible source of infection (purulent sputum OR positive respiratory cultures)

Probable ventilator-associated pneumonia - criteria of IVAC plus probable source of infection (purulent sputum AND positive respiratory cultures)

Infection-related ventilator-associated complication (IVAC) - criteria of VAC plus clinical signs of infection (fever, modified white blood cell number) **AND** new antibiotic treatment for at least 4 days

Ventilator-associated condition (VAC) - new onset alteration of ventilatory parameters, after at least 2 days of stabilisation: increasing daily fraction of inspired oxygen (F_iO₂) with 20% **OR** increasing positive end-expiratory pressure (PEEP) value with 3 cmH₂O

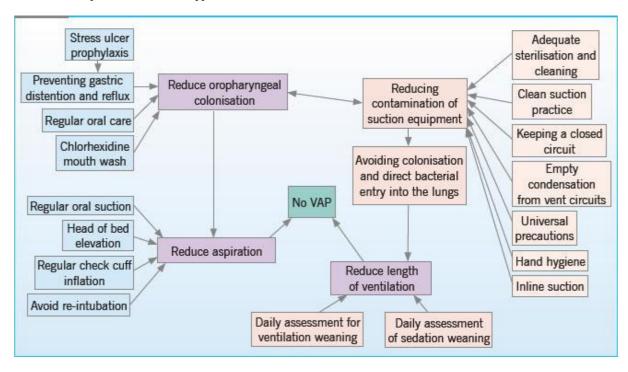
Ventilator-associated event (VAE) - describes both infectious or noninfectious complications caused by mechanical ventilation

The second traditional approach, semi-recumbent position or head of bed elevation (30-45 degrees) is also important. This method highly decreases the probability of aspiration of gastric and oropharyngeal material to the lungs, and the likelihood of an infection. In addition, limiting the number of days of mechanical ventilation by performing daily assessments that determine the readiness to wean and avoiding unnecessarily sedated patients are viable options to avoid exposure and risk. Aseptic methods of intubation and suctioning methods are also crucial. The appropriate disinfection of ventilator circuits, as well as prevention of unnecessary changes of the latter also contribute to the reduction of the risk of infection. In addition, closed suction systems are preferable to open ones since they minimize the disconnection and exposure to the pathogens. Preventive techniques of VAP have been based on infection control initiatives, oral and breathing care, patient "face-down" positioning and clean use of ventilator paraphernalia. Although these measures are not a new phenomenon, they form the basis of VAP prevention and, as such, have been instrumental in the formulation of more streamlined evidence-based bundles of care. Both of those factors, their consistent use with the help of further education of staff and monitoring of compliance, plays a significant role in reducing the incidence of VAP levels.

METHODOLOGY

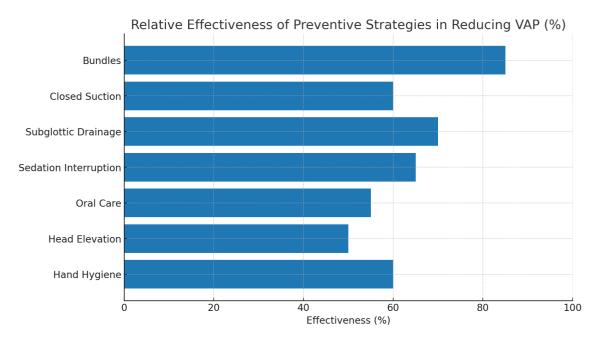
The current research uses qualitative research design based on a systematic literature review methodology Relevant studies were identified, using inclusion criteria studies that report on adult ICU patients in mechanical ventilation, research about preventive strategies to VAP, evidence-based clinical trials, meta-analyses, or systematic research. Exclusion criteria were studies on pediatric populations, all non-clinically relevant articles and articles whose methodologies were not sufficiently rigorous. Data were combined and orthodox in themes and four primary areas were incidence and impact of VAP, identified risk factors, traditional and evidence-based preventive strategies and outcomes of implementing VAP prevention bundles. The results were contrasted with those in other healthcare settings in order to identify similarities between them, differences, and any gaps in practice. The methodological approach made it possible to conduct a thorough examination of the current evidence so as to establish best practices, their effectiveness and how to have them implemented sustainably within intensive care setting.

RESULTS AND DISCUSSION


The literature review demonstrates that Ventilator-Associated Pneumonia (VAP) is a common and severe sequala of patients under mechanical ventilation with global incidence rates of 10-30 percent. These findings indicate that VAP increases ICU length of stay (longer by 7-9 days), hospital expenses (between 10,000 and 40,000 in each patient) and mortality (between 20 and 50 percent). These effects are compounded in cases involving multidrug-resistant organisms, especially Pseudomonas stephens et Aeruginosa, Acinetobacter baumannii and Staphylococcus aureus. The analysis also suggests that there are numerous risk factors that cause the occurrence of VAP such as patient-related risk factors (age, comorbidities, immunosuppression), procedure-related risks (prolonged ventilation, emergency intubation, reintubation, and sedation), and healthcare-related risks (poor hand hygiene,

inadequate infection control, resource constraints) (Waliszek et al., 2016). Old remedies that were used as modes of preventing the infections were proven to be useful when used properly. Procedures including hand hygiene, elevation of head-of-bed, oral care using chloropseudine, aseptic method of suctioning, and endotracheal tube handling proved to be quantifiable where they helped inhibit aspiration and the bacteria colonizing the airway. The use of the closed suction systems and introduction of subglottic drainage of the secretion have been effective in reducing chances of pathogen introduction at the respiratory tract. This is verified by evidence of studies that prove that the usage of VAP prevention bundles (combinations of practices proven to be effective used simultaneously) is much more effective than individual measures in reducing the incidence of an infection. The adherence to these bundles was closely linked with improved patient outcome, reduced length of stay, and mortality (Alecrim et al. 2019).

Table:1 Effectiveness of Preventive Strategies for VAP


Preventive Strategy	Effectiveness
Hand Hygiene & Infection Control	Reduces cross-contamination and spread of pathogens
Head-of-Bed Elevation (30–45°)	Decreases risk of aspiration-related pneumonia
Oral Care with Chlorhexidine	Lowers bacterial colonization of oropharynx and reduces infection risk
Daily Sedation Interruption & Early	Shortens duration of ventilation and lowers VAP risk
Weaning	
Subglottic Secretion Drainage	Prevents aspiration of contaminated secretions into the lungs
Closed Suction Systems	Minimizes disconnections and reduces risk of contamination
VAP Prevention Bundles	Most effective; significant reduction in VAP incidence and mortality when
	applied consistently

Based on the outcomes of this review it is quite evident as to why VAP is becoming an increasingly wide spread complication of mechanical ventilation as well as one that affects patient care in terms of cost, mortality and patient safety. The equality in the high incidence rates observed in both high- and low-resource settings shows that VAP is an global issue but the burden is worse in the settings with poor healthcare infrastructure and low infection precaution practices. The results indicate that VAP prevention is possible in an assumed manner when the strategies both old and evidence-based are executed continually. Head-of-bed elevation, oral care, hand hygiene and endotracheal tube management are among the most effective and applicable practices. Such tactics are not so expensive and can be applied even in the climate of resource constriction environments.

Another point of the discussion is that the implementation of the care bundles is recognized as the most important progress in decreasing VAP incidence. These bundles make sure that no particular preventive measure is neglected and the practices are consistent among healthcare providers (Coppadoro et al. 2019). Nonetheless, their effectiveness requires high levels of adherence, the unceasing training of staff, and supervision as well as the institutional provisions. The barriers are still non-compliance, unawareness and scarce resources particularly in the low and middle income nations. The other significant discovery is that VAP is linked with antimicrobial resistance. VAP prevention assists in both patient outcomes and minimizing antibiotic use, namely broad-spectrum antibiotics, which aids the international antimicrobial stewardship efforts. Therefore, prevention strategies implications are not limited to the ICU and will help in the war against multidrug resistance. This research confirms the view that prevention of VAP is more effective than its treatment clinically as well as even economically. The improvement of multidisciplinary collaboration between nurses, physicians, respiratory therapists and the adherence to preventive bundles and

overcoming obstacles to entry are essential to the accomplishment of long-term VAP reductions.

CONCLUSION

Ventilator-Associated Pneumonia (VAP) remains one of the highest burdens in the critical care setting having substantial consequences on patient safety, scarce resources as well as global antimicrobial resistance. This has been confirmed in the review that VAP is extremely high with resultant morbidity, mortality as well as costs and is highly preventable with strict measures with adherence to evidence-based measures. The fundamentals of prevention include traditional measures that include hand hygiene, head-of-bed elevation, oral care, and aseptic procedures. Nevertheless, one should speak about the greatest success in the form of VAP prevention bundles that represent a combination of multiple practices and consistency of care delivery. The findings indicate that the prevention also includes the necessity to have organizational commitment and the ongoing staff education as well as strong monitoring of compliance. Current practices require the multidisciplinary collaboration of nurses, physicians, and respiratory therapists in a bid to implement and maintain the best practices. The prevention of VAP would be more cost-effective and clinically better than treatment. The redesign of best practices and regional prevention bundle standardization can help improve the rate of infections, patient outcome, and the global resistance to antimicrobials.

REFERENCES

- 1. Alecrim, R. X., Taminato, M., Belasco, A., Longo, M. C. B., Kusahara, D. M., & Fram, D. (2019). Strategies for preventing ventilator-associated pneumonia: an integrative review. Revista brasileira de enfermagem, 72, 521-530.
- Burja, S., Belec, T., Bizjak, N., Mori, J., Markota, A., & Sinkovič, A. (2018). Efficacy of a bundle approach in
 preventing the incidence of ventilator associated pneumonia (VAP). Bosnian journal of basic medical sciences, 18(1),
 105.
- 3. Coppadoro, A., Bellani, G., & Foti, G. (2019). Non-pharmacological interventions to prevent ventilator-associated pneumonia: a literature review. Respiratory care, 64(12), 1586-1595.
- 4. Ehrmann, S., Barbier, F., Demiselle, J., Quenot, J. P., Herbrecht, J. E., Roux, D., ... & Tavernier, E. (2023). Inhaled amikacin to prevent ventilator-associated pneumonia. New England Journal of Medicine, 389(22), 2052-2062.
- 5. Gerard, L., Lecocq, M., Detry, B., Bouzin, C., Hoton, D., Pinto Pereira, J., ... & Pilette, C. (2024). Airway epithelium damage in acute respiratory distress syndrome. Critical Care, 28(1), 350.
- 6. Le Pape, M., Besnard, C., Acatrinei, C., Guinard, J., Boutrot, M., Genève, C., ... & Barbier, F. (2022). Clinical impact of ventilator-associated pneumonia in patients with the acute respiratory distress syndrome: a retrospective cohort study. Annals of Intensive Care, 12(1), 24.
- 7. Mehta, A., & Bhagat, R. (2016). Preventing ventilator-associated infections. Clinics in chest medicine, 37(4), 683-692.
- 8. Spalding, M. C., Cripps, M. W., & Minshall, C. T. (2017). Ventilator-associated pneumonia: new definitions. Critical care clinics, 33(2), 277.
- 9. Wałaszek, M., Kosiarska, A., Gniadek, A., Kołpa, M., Wolak, Z., Dobroś, W., & Siadek, J. (2016). The risk factors for hospital-acquired pneumonia in the Intensive Care Unit. Przegl Epidemiol, 70(1), 15-20.
- 10. Wu, D., Wu, C., Zhang, S., & Zhong, Y. (2019). Risk factors of ventilator-associated pneumonia in critically III patients. Frontiers in pharmacology, 10, 482.