

The Most Effective Obturation Technique in Curved Root Canals: A Systematic Review and Meta-Analysis

Dr. Rakesh R Rajan¹, Dr. R Sreenath², Dr. Venkitachalam Ramanarayanan³, Dr. Prabath Singh VP⁴, Dr. Anju Varughese⁵, Dr. V Krishnan⁶

¹Proffesor, Department of Conservative Dentistry and Endodontics, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, Kochi

²Assistant Professor, Department of Conservative Dentistry and Endodontics, Mahe Institute of Dental Sciences and Hospital, Mahe

³Reader, Department of Public Health Dentistry, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, Kochi
⁴Proffesor & HOD, Department of Conservative Dentistry and Endodontics, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, Kochi

⁵Reader, Department of Conservative Dentistry and Endodontics, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham,

⁶Reader, Department of Conservative Dentistry and Endodontics, Amrita School of Dentistry, Amrita Vishwa Vidyapeetham, Kochi

ABSTRACT

Objective: A complete three-dimensional filling of the root canal system is the primary goal of endodontic therapy. In the case of curved canals, obturating the entire root canal space is a concern and adjunctive techniques are required to attain so. This systematic review aims to understand the most effective obturation technique in curved root canals.

Methodology: A systematic literature search was undertaken in the databases MEDLINE Ovid (from 1946), Scopus, and Google Scholar, as well as a hand search of the references of included publications. Ex-vivo and in-vitro studies were also included. The risk of bias was assessed. Meta-analysis was performed comparing lateral condensation and thermoplasticized technique using microleakage as an outcome.

Results: A total of 15 studies were included for systematic review and 6 studies were included for meta-analysis. No significant difference was seen between the main comparison group Of Cold Lateral Condensation and thermoplasticized obturation techniques.

Conclusion: Both Cold lateral condensation and thermoplasticized technique have comparable microleakage and the comparison of void space in the individual studies also showed debatable results.

KEYWORDS: Obturation techniques, Curved Root Canal, Thermoplasticized, Lateral condensation, Gutta-percha.

How to Cite: Dr. Rakesh R Rajan, Dr. R Sreenath, Dr. Venkitachalam Ramanarayanan, Dr. Prabath Singh VP, Dr. Anju Varughese, Dr. V Krishnan, (2025) The Most Effective Obturation Technique in Curved Root Canals: A Systematic Review and Meta-Analysis, Vascular and Endovascular Review, Vol.8, No.3s, 221-228.

INTRODUCTION

The goal of successful endodontic therapy is to completely debride vital or necrotic tissue and then achieve a total three-dimensional filling of the root canal space (1,2). In the long term, success can be measured either clinically with no symptoms or radiographically with the absence of lesions. The clinical success rate is almost 96% once complete obturation of the canal space is attained whereas an inadequate or incomplete filling is the cause of nearly 60 % of endodontic failures (3,4). The leakage of microorganisms and their pathogens through the interface of the obturating material and the dentinal walls initiates the reinfection of the canal space (3,5). The morphology of the root canal is also critical for endodontic success(6). The extent of the root canal curvature has an impact on obturation. Gutta-percha has proven to be an excellent obturation material for both straight and curved roots because it becomes viscous especially when heated and can be condensed to the root canal walls. According to literature, gutta-percha can be used to obturate 95% of the root canal space utilising various filling procedures(7). Although many procedures involving gutta-percha have been devised to provide acceptable three-dimensional obturation, cold lateral condensation(CLC) in conjunction with a root canal sealer remains one of the most popular(8,9).

Single cone, core carrier-based, and thermoplasticized are the other main techniques to fill the root canal space. A single master cone is inserted into a sealer-lined canal in a single cone obturation technique, whereas a master cone is inserted into a canal coated with sealer and condensed by a pre-fitted, tip heated electrical plugger in an injectable thermoplastic obturation technique. The canal is backfilled with thermoplasticized material after the softened point is vertically condensed and the plugger is removed. In a core carrier-based technique, a sealer is coated into the canal and a core carrier covered with gutta-percha or other materials is inserted, which is heated before placement for a thermoplasticized effect. The Cold lateral condensation being the most commonly used method of canal obturation, it serves as a standard against which other techniques can be compared (9). Some studies have also shown the superiority of these techniques over CLC for curved canals obturation (10–12).

Various methods have been used to evaluate the quality of the apical seal established by root canal obturation material, including dye penetration, radioisotope penetration, bacterial leakage, fluorometric and electrochemical techniques, fluid filtration, scanning electron microscopy, and gas chromatography (13). Microleakage tests are commonly used to assess the root canal filling's capacity to seal (14). The dye penetration method was chosen because it is simple, easy to carry out, and does not necessitate the use of specialized materials(15). The amount of void space in canal fillings can also be examined while analysing the adequacy and quality of the obturation. Void space in canal fillings their capacity to create a tight seal, allowing pathogens and fluid to escape through(16,17). When it comes to evaluating void space, any image analysis techniques can be (stereomicroscope (SEM), Cone-beam computed tomography (CBCT), MICRO-CT).

Thus, the aim of this systematic review and meta-analysis is to analyse the most effective obturation technique for curved root canals.

METHODS

This systematic review and meta-analysis were intended to answer the research question, "Which obturation technique is most effective for curved root canals?" and included in-vitro studies and ex-vivo studies. Studies were included if they satisfied the following criteria: (a) root canals with a minimum curvature of 5 degrees; (b) any type of tooth; and (c) only studies written in English. The exclusion criteria were (a) simulated cured root canals for example within acrylic blocks (b) obturation done with any other technique other than lateral condensation, single cone, and thermoplasticized (core carrier-based, injectable).

The intervention group consisted of obturation techniques which included single cone obturation and thermoplasticized technique (both injectable technique and core carrier-based method) and the control group was the conventional CLC method. The outcomes measured were the microleakage for studies that used dye penetration method and void space calculated using any image analysis techniques viz SEM, CBCT, Micro-CT.

The MEDLINE Ovid, Scopus, Google Scholar, and EBSCO databases were searched for relevant articles. There were no constraints on the date or place of publication, but only studies published in English were considered for this systematic review. Additionally, the reference lists of the included studies were examined for additional references, and a hand search of the studies was undertaken. The search strategy used in Medline was: ((obturat*) OR (gutta-percha) OR (obturat* technique*) OR (obturat* method*) OR (root canal fill*)) AND ((curved canal) OR dilacerat* OR (bent root*) OR (curved root*)).

Two authors (SR and RR) independently performed the search management using Covidence software. Duplicate articles were removed and remaining articles were screened by title and abstract. Studies that did not match the criteria for inclusion were eliminated following which full-text of the selected articles were retrieved. They were analyzed further for specific inclusion and exclusion criteria and final articles for the systematic review were included. At all stages, if there were any disagreements, it was adjudicated by a third reviewer (RV). For all of the databases specified, the search was conducted in February 2021. There was no lower time limit specified. For each of the included studies, relevant data was extracted in a Microsoft Excel sheet which included study authors name, country, study design, root canal curvature, sample size, outcome measure, outcome assessment method, post obturation processing technique prior to analysis, type of sealer, intervention, outcomes, and results.

The risk of bias for each included study was assessed independently by two authors (SR and RR). For in-vitro studies, there was no standardized tool for quality assessment. Customized tools have been utilized in previous reviews. This review adapted a tool from a similar review (18) and the following parameters were assessed and graded for calculating the risk of bias (i) presence of control group (ii) Description of sample size calculation (iii) randomization (iv) root canal procedure performed by a single operator (v) use of obturating material according to manufacturer's instructions (vi) time for evaluation of outcome (vii) blinding of outcome assessor. Each article received a Y (yes) for that parameter if the authors reported it; if the information could not be found, the article received an N (no). High risk of bias was assigned to studies that reported 1–2 items, medium risk to studies reporting 3–5, and low risk to studies reporting 6–7 items.

For quantitative synthesis, the outcome studied were microleakage (recorded in mm) and the void space (recorded in mm³ and percentage). Meta-analysis was performed with RevMan 5.4.1. As the data was continuous in nature, the mean and standard deviation was extracted from the included studies and the summary effect measure used was Mean Difference (MD) reported with a 95% confidence interval. For any missing data, the study was excluded from the review.

We used Cochran's Q statistic, a chi-square test, and a p-value cut-off of less than 0.10 to assess the data's heterogeneity (19). The consistency of the results was assessed visually using forest plots and by the I^2 statistic (20). The I^2 statistic describes the proportion of variation in point estimates attributable to heterogeneity as compared to sampling error.

RESULTS

A total of 518 studies were retrieved based on database and hand searching. After removing duplicates, 286 papers were included for the title and abstract screening. Further, 251 articles were eliminated because they were irrelevant to this review. Full-texts were retrieved and screened for the remaining 35 articles and 15 papers were chosen for qualitative synthesis. Among them, five articles were chosen for quantitative analysis (Figure 1).

Of the 15 included studies, five studies were from Unites States of America(9,21–24), three from Turkey (2,25,26), two from United Kingdom (12,27) and one each from Spain (28), Germany (29), Netherland (10), Wales (30) and Iran (11). All the studies

were in-vitro with sample sizes ranging from 20 to 144 and with a minimum of 5° canal curvature. No ex-vivo studies were found. In eleven studies dye penetration was measured (9,10,12,21–25,27,28,30), whereas in four studies void space was calculated (2,11,26,29). Among those eleven studies which measured dye penetration, India Ink was the dye of choice for seven studies (9,12,21,22,24,28,30), methylene blue for three studies (10,25,27), and procion blue for one study (23) (Table 1).

Considering the intervention groups in the included studies, thermoplasticized obturation technique was the only intervention group in eleven studies (9,10,11,12,21–28,30), and one study each was those, that compared thermoplasticized (injectable and core carrier) and single cone technique (2), and both thermoplasticized and single cone technique (29). AH Plus sealer was the commonly used sealer material in five studies (2,9,26,28,29) followed by Tubliseal (12,27,30) in three studies, AH 26 (10,11) and Roth 801 (22,23) in two studies and Topseal (21), Kerr Pulp (24), Zoe sealer (25) in one study each (Table 1).

Among the 20 studies excluded during full-text screening, six studies had the wrong patient population, four were duplicate studies not identified in the initial screening, three each had wrong comparator and wrong intervention, two with wrong study design, one with a wrong indication and one article (full text) was not retrievable.

Quality assessment was done for included studies using a customized tool. It was found that all the studies had the presence of a control group, no study reported a description of sample size estimation, 9 out of 15 studies did not randomize the tooth into intervention groups, 8 out of 15 studies were only carried out by single operators, 10 out of 15 studies performed the procedures following manufactures instructions, 12 out of 15 studies have stated the time for evaluation outcome and 11 out of 15 studies did not perform the blinding of outcome assessor. Within the 15 studies around 11 studies had medium risk (73.3%) and four studies were found to be of high risk (26.7%). (Table 2)

Of the 15 included studies, six were counted in for quantitative analysis which had microleakage assessment using dye penetration as the outcome. Among the nine studies which were not included for quantitative analysis, four studies (2,11,26,29) measured the outcome as void space, which was of a different outcome effect than microleakage, and none of these studies had a common standard measurement value. Among these, two studies (2,26) did not show any significant variations between the method of obturation whereas one study favoured the lateral condensation (29) and one favoured thermoplasticized (11) as a superior method. One study (10) measured the microleakage and radiographic quality assessment of obturation in a different measurement unit (percentage), so was not included, in which thermoplasticized was found to be much superior to CLC in terms of radiographic appearance and stereomicroscopic adaptation, while dye penetration showed no significant difference. Three studies (12,22,30) had reported only the mean values without the standard deviation, hence were not included which one study assessed the microleakage and it favoured thermoplasticized over lateral condensation (22), other two studies assessed the radiographic quality and sealability in which lateral condensation was found superior (12,30). In one study (25) the apical dye penetration seen following obturation by the thermoplasticized and CLC procedures was compared using a spectrophotometric approach, and no significant microleakage variations were discovered.

A total of six studies_with were included for quantitative synthesis. The outcome was microleakage (measured in mm). The intervention group in all studies were thermoplasticized technique compared with CLC as the control. It was observed that there was no statistically significant difference in the microleakage between the two obturation techniques [MD: 0.24, 95% Cl: -0.23, 0.70]. The heterogeneity [I²] was 76% (Figure 2.).

DISCUSSION

Several techniques have been introduced to perform obturation of cleaned and shaped root canals. The obturation of curved canals are a serious concern and the morphology plays a key role in endodontic success. This study aimed to evaluate the most effective obturation technique for curved root canals. In this review, conventionally used CLC was considered as the control group and comparisons were made with thermoplasticized technique which included both-of core carrier-based and injectable technique. Microleakage and void space investigations were taken into consideration as these were the two key outcomes.

Radiographs, bioluminescence, histological sections, dye leakage, microleakage models, and cleaning techniques have all been presented as ways to examine the quality of root canal fillings. The use of CT or CBCT is a relatively new technique(31). The fundamental benefit of the clearing procedure is that the dye penetration can be examined in three dimensions, allowing for the measurement of the dye's greatest extent (9,12,32).

Overall metanalysis comparing the CLC and thermoplasticized was performed to evaluate the most effective obturation technique for reducing microleakage in curved root canals, it was suggested that both these techniques have comparable microleakage. When comparing the CLC and thermoplasticized technique, Abarca *et al.*(21) reported that when the curvature was between 20 and 40 degrees, the difference in microleakage was not significant. He also indicated that variance could arise due to differences in specimens, operators, and measuring procedures. Barkins *et al.*(23) suggested that after decalcification and clearing, the metal in the obturators had a natural propensity to revert to a straight form, resulting in curvature reduction when the roots became malleable, and CLC was preferable to thermoplasticized because the latter had more linear leakage. Dummer *et al.* (27) stated that thermafil obturators were equivalent to, if not better than CLC of gutta-percha in terms of radiographic density of fill and apical dye penetration, according to the study. Thermafill obturators with plastic carriers were easy to use and much faster than lateral condensation of gutta-percha, and only a small amount of sealer was required at the canal orifices. This study also had a high weightage in meta-analysis as this study had the maximum sample size and was the only study that clearly preferred thermoplasticized over CLC. Lares *et al.*(24) suggested that sealer was consistently extruded through the apex during obturation with the Thermafil technique, which would increase the rate of postoperative pain after obturation. A probable mass shrinkage of

the gutta-percha occurred when it cools down, resulting in a space between the gutta-percha and the canal wall, resulting in greater dye penetration. Thermafil is the only warm gutta-percha technique that did not use condensation in the apical third when the gutta-percha is cooling down, in compared to other warm gutta-percha procedures.

Some studies used fluid filtration to quantify microleakage, which also stated that CLC and thermoplasticized were comparable (33). The most common method of root canal obturation is CLC of gutta-percha (9,34), however to optimise the three-dimensional filling of curved and straight root canals, procedures based on pre-heating the gutta-percha were introduced (35). In terms of void space assessment among the three studies, two studies (2,26) favoured our overall outcome whereas one study (29) stated that thermoplasticized pluggers which were heated using a Bunsen burner flame, took a longer time, it was suggested that LC of greater taper gutta-percha cones is a faster and more efficient method. It was even mentioned that using an electric heat carrier would have resulted in significantly shorter obturation times.

Considering the radiographic quality within the included studies, lateral condensation was superior in two studies (12,30) and the buccolingual view suggested a denser fill than the mesiodistal view because the buccolingual width of teeth is usually greater than the mesiodistal width. But both studies have stated that while comparing the apical sealability thermoplasticized was superior. Comparing other studies which were not in metanalysis with dye penetration, two studies (10,22) also favoured our overall outcome whereas one study (11) suggested herofill system (thermoplasticized) as more effective.

One drawback of CLC is that a homogeneous mass of gutta-percha does not form at any point. A large number of gutta-percha cones are forcefully squeezed together and connected by the frictional grip and cementing substance in the final filling. Schilder claims that warm vertical condensation of gutta-percha provides a higher density of gutta-percha at the apical region of the filling and consistently obturates lateral canals and foramin(36). In the case of an open apex, thermoplasticies obturation may result in obturating material extrusion rather than lateral condensation(37).

Taking canal curvature into account, certain research has concluded that thermoplaticized is a far superior solution than CLC in canals with curvatures higher than 25 degrees(38). Comparing the sealer used, AH Plus is one of the most widely used (39). The chemical composition and setting of AH Plus sealer have been impacted by high temperatures (40). The removal of the smear layer plays a key role, better gutta-percha adaptation is obtained with both obturation techniques when the smear layer is removed (41).

Although results are indicative of similar effectiveness of both techniques, it is also influenced by several factors like degree of canal curvature, use of sealer, and individual clinician's skill in performing the obturation techniques. There were also certain methodological limitations in the included studies especially with respect to the absence of a sample size calculation and randomization which could have impacted the study's validity. The majority of studies also lacked the blinding of outcome assessors, which could have biased the outcome evaluation, and hence the results need to be interpreted with caution.

CONCLUSION

This review suggests that both lateral condensation or thermoplasticized obturation technique do not differ significantly in microleakage. The comparison of void space in the individual studies also showed debatable results, thus it may indicate that both techniques could be indicated in case of curved root canals. Other parameters such as canal curvature, the level of chemomechanical preparation, and the particular clinician's experience and knowledge in the specific obturation technique also need to be considered.

REFERENCES

- 1. Azim AA, Griggs JA, Huang GT-J. The Tennessee study: factors affecting treatment outcome and healing time following nonsurgical root canal treatment. Int Endod J. 2016 Jan;49(1):6–16.
- 2. Alim BA, Garip Berker Y. Evaluation of different root canal filling techniques in severely curved canals by microcomputed tomography. Saudi Dent J. 2020 May;32(4):200–5.
- 3. Maden M, Görgül G, Tinaz AC. Evaluation of apical leakage of root canals obturated with Nd: YAG laser-softened gutta-percha, System-B, and lateral condensation techniques. J Contemp Dent Pract. 2002 Feb 15;3(1):16–26.
- 4. Shahi S, Zand V, Oskoee S, Abdolrahimi M, Rahnema A. An in vitro study of the effect of spreader penetration depth on apical microleakage. J Oral Sci. 2008 Jan 1;49:283–6.
- 5. Baumgardner KR, Taylor J, Walton R. Canal adaptation and coronal leakage: lateral condensation compared to Thermafil. J Am Dent Assoc 1939. 1995 Mar;126(3):351–6.
- 6. Vertucci FJ. Root canal anatomy of the human permanent teeth. Oral Surg Oral Med Oral Pathol. 1984 Nov;58(5):589–
- 7. Neuhaus KW, Schick A, Lussi A. Apical filling characteristics of carrier-based techniques vs. single cone technique in curved root canals. Clin Oral Investig. 2016 Sep;20(7):1631–7.
- 8. Inan U. In Vitro Evaluation of Matched-Taper Single-Cone Obturation with a Fluid Filtration Method. 2009;75(2):4.
- 9. Schafer E, Olthoff G. Effect of Three Different Sealers on the Sealing Ability of Both Thermafil Obturators and Cold Laterally Compacted Gutta-Percha. J Endod. 2002 Sep;28(9):638–42.
- 10. Kersten HW, Fransman R, Velzen SKT. Thermomechanical compaction of gutta-percha. II. A comparison with lateral condensation in curved root canals. Int Endod J. 1986 May;19(3):134–40.
- 11. Zarei M, Talati A, Mortazavi M, Zarch HH, Javidi M, Bidokhty HA. In-vitro evaluation of the effect of canal curvature on adaptation of gutta-percha in canals obturated with HEROfill system by CBCT. J Oral Sci. 2011;53(1):43–50.

- 12. Gilhooly RMP, Hayes SJ, Bryant ST, Dummer PMH. Comparison BlackwellScience,Ltd of cold lateral condensation and a warm multiphase gutta-percha technique for obturating curved root canals. Int Endod J. 2000;6.
- 13. Dalat DM, Spngberg LSW. Comparison of apical leakage in root canals obturated with various gutta-percha techniques using a dye vacuum tracing method. J Endod. 1994 Jul 1;20(7):315–9.
- 14. Aa M, V B-C, S G-L. Bond strength to root dentin and fluid filtration test of AH Plus/gutta-percha, EndoREZ and RealSeal systems. J Appl Oral Sci Rev FOB. 2013 Jul 1;21(4):369–75.
- 15. Bodrumlu E, Tunga U. Apical Leakage of ResilonTM Obturation Material. J Contemp Dent Pract. 2006 Oct 1;7:45–52.
- Gandolfi MG, Parrilli AP, Fini M, Prati C, Dummer PMH. 3D micro-CT analysis of the interface voids associated with Thermafil root fillings used with AH Plus or a flowable MTA sealer. Int Endod J. 2013;46(3):253–63.
- 17. Wu M-K, Bud MG, Wesselink PR. The quality of single cone and laterally compacted gutta-percha fillings in small and curved root canals as evidenced by bidirectional radiographs and fluid transport measurements. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontology. 2009 Dec;108(6):946–51.
- 18. E A, D B, R A, S A-S, K A, A M. In Vitro Antimicrobial Effectiveness of Root Canal Sealers against Enterococcus faecalis: A Systematic Review. J Endod. 2016 Sep 9;42(11):1588–97.
- 19. Huedo-Medina T, Sanchez-Meca J, Marín-Martínez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I 2 Index? Psychol Methods. 2006 Jul 1;11:193–206.
- 20. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002 Jun 15;21(11):1539-58.
- 21. Abarca A, Bustos A, Navia M. A Comparison of Apical Sealing and Extrusion between Thermafil and Lateral Condensation Techniques. J Endod. 2001 Nov;27(11):670–2.
- 22. McMurtrey LG, Krell KV, Wilcox LR. A comparison between thermafil and lateral condensation in highly curved canals. J Endod. 1992 Feb;18(2):68–71.
- 23. Barkins W, Montgomery S. Evaluation of thermafil obturation of curved canals prepared by the canal master-U system. J Endod. 1992 Jun;18(6):285–9.
- 24. Lares C, ElDeeb ME. The sealing ability of the thermafil obturation technique. J Endod. 1990 Oct;16(10):474-9.
- Alacam T, Omurlu H, Gorgul G, Yilmaz T. Comparison of the Sealing Efficacies of Two Obturation Techniques in Curved Root Canals Instrumented with and without Ultrasonic Irrigation. J Nihon Univ Sch Dent. 1994;36(2):112–6.
- Simsek N, Keles A, Ahmetoglu F, Akinci L, Er K. 3D Micro-CT Analysis of Void and Gap Formation in Curved Root Canals. Eur Endod J [Internet]. 2017 Sep 6 [cited 2021 May 10];2(1). Available from: http://eurendodj.com/jvi.aspx?un=EEJ-43153
- 27. Dummer PMH, Lyle L, Rawle J, Kennedy JK. A laboratory study of root fillings in teeth obturated by lateral condensation of gutta-percha or Thermafil obturators. Int Endod J. 1994 Jan;27(1):32–8.
- 28. Heredia MP, González JC, Luque CMF, Rodríguez MPG. Apical seal comparison of low-temperature thermoplasticized gutta-percha technique and lateral condensation with two different master cones. Med Oral Patol Oral Cir Bucal. :5.
- 29. Schäfer E, Nelius B, Bürklein S. A comparative evaluation of gutta-percha filled areas in curved root canals obturated with different techniques. Clin Oral Investig. 2012 Feb;16(1):225–30.
- 30. Gilhooly RMP, Hayes SJ, Bryant ST, Dummer PMH. Comparison of lateral condensation and thermomechanically compacted warm α-phase gutta-percha with a single cone for obturating curved root canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontology. 2001 Jan;91(1):89–94.
- 31. Gambarini G. In vitro evaluation of carrier based obturation technique: a CBCT study. Ann Stomatol (Roma) [Internet]. 2016 [cited 2021 May 10]; Available from: http://www.annalidistomatologia.com/common/php/portiere.php?ID=42f204c4afce38a2faea593eeb77796c
- 32. Gulabivala K, Holt R, Long B. An in vitro comparison of thermoplasticised gutta-percha obturation techniques with cold lateral condensation. Dent Traumatol. 1998 Dec;14(6):262–9.
- 33. Afzalifar D. Original Article. J Dent. 12(8):9.
- 34. Cohen S, Burns RC. Pathways of the Pulp. Mosby; 1998. 926 p.
- 35. Canalda-Sahli C, Berástegui-Jimeno E, Brau-Aguadé E. Apical sealing using two thermoplasticized gutta-percha techniques compared with lateral condensation. J Endod. 1997 Oct 1;23(10):636–8.
- 36. Schilder H. Filling root canals in three dimensions. Dent Clin North Am. 1967 Nov;723-44.
- 37. George JW, Michanowicz AE, Michanowicz JP. A method of canal preparation to control apical extrusion of low-temperature thermoplasticized gutta-percha. J Endod. 1987 Jan 1;13(1):18–23.
- 38. Leung SF, Gulabivala K. An in-vitro evaluation of the influence of canal curvature on the sealing ability of Thermafil. Int Endod J. 1994 Jul;27(4):190–6.
- 39. Silva EJ, Perez R, Valentim RM, Belladonna FG, De-Deus GA, Lima IC, *et al.* Dissolution, dislocation and dimensional changes of endodontic sealers after a solubility challenge: a micro-CT approach. Int Endod J. 2017 Apr;50(4):407–14.
- 40. Camilleri J. Sealers and warm gutta-percha obturation techniques. J Endod. 2015 Jan;41(1):72–8.
- 41. Gençoğlu N, Samani S, Günday M. Dentinal wall adaptation of thermoplasticized gutta-percha in the absence or presence of smear layer: A scanning electron microscopic study. J Endod. 1993 Nov 1;19(11):558–62.

FIGURES

Figure 1: Flow diagram showing the study selection process

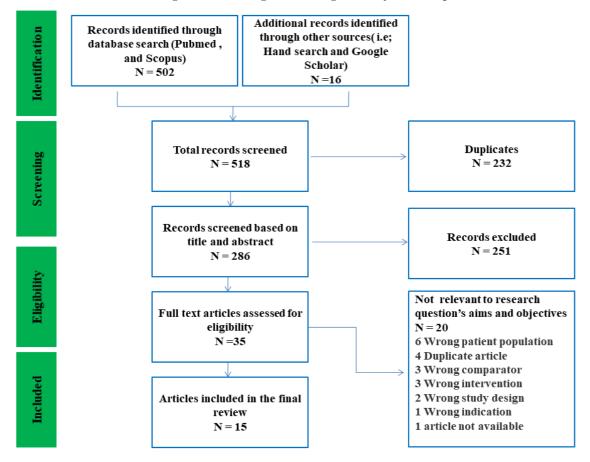
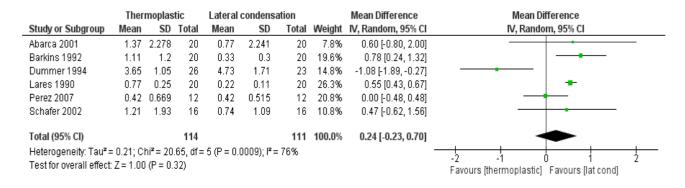



Figure 2: Forest plot of microlekage analysis with dye penetration

TABLES

Table 1: Characteristics of the included studies

Stu dy id	Co unt ry	St ud y de sig n	Can al curv atur e(c)	Sa m pl e siz e	m e me pl measur assess e e ment siz metho		Post Obturation Processing technique prior to analysis	Sea ler	Interventi on	C o n tr ol
Ab	Uni	In	20-	40	Microle	Stereo	Sealer setting time - 7 days, dye - India ink	To	Thermopla	L
arc	ted	vit	40		akage	micros	2 days, drying - 1 day,5% nitric acid	pse	sticized	C
a		ro				cope	,100% ethyl alcohol, methyl	al	(core	
	1	I		I	ı	ı	salicylate		carrier)	I I

200	Stat es of Am eric a									
Bar kin s 199 2	Uni ted Stat es of Am eric a	In vit ro	20- 60	46	Microle akage	Stereo micros cope	Sealer setting time - 7 days, Procion Blue - 37 C for 5 days, dimethyl sulfoxide - 21 days, ethyl alcohol (70% & 96%)- 1 day each, absolute alcohol- 2hrs, methyl salicylate	Rot h 801 sea ler	Thermopla sticized (core carrier)	L C
Du mm er 199	Uni ted Kin gdo m	In vit ro	Not state d	14 4	Microle akage/ Radiogr aphic quality	Not Stated	Sealer setting time - 2days, methylene blue - for 2 days	Tu blis eal	Thermopla sticized (core carrier)	L C
Lar es 199 0	Uni ted Stat es of Am eric a	In vit ro	>30	40	Microle akage	Digital Callipe r	Sealer setting time - 7 days, India ink -for 14 days, dried - 1 day, 5% nitric acid - 2 days, alcohol (50%,75%,95%, absolute)-3hrs each, methyl salicylate, alcohol (50%,75%,95%, absolute)-6hrs each, vaccum - 2days	Ker r Pul p C S	Thermopla sticized (core carrier)	L C
Per ez 200 7	SP AI N	In vit ro	25- 40	44	Microle akage	Stereo micros cope	Sealer setting time - 3 days, India ink -for 7 days		Thermopla sticized (Injectable Technique)	L C
Sch äfer 200 2	Uni ted Stat es of Am eric a	In vit ro	20- 30	14 2	Microle akage	Stereo micros cope	Sealer setting - 3 days, India ink - 2 days, 5% nitric acid- 3 days, ethanol (80%, 90%, 99%), methyl salicylate		Thermopla sticized (core carrier)	L C
Ker sten 198 6	NE TH ER LA ND S	In vit ro	10- 25	11 2	Microle kage/ Radiogr aphic quality	Stereo micros cope	Sealer setting - 7 days, methylene blue - 4 days		Thermopla sticized (Injectable Technique)	L C
Gil hoo ly 200	WA LE S	In vit ro	Not state d	10 8	Microle kage/ Radiogr aphic quality	Stereo micros cope	Sealer setting time - 3 days, India ink -for 14 days, 11% nitric acid - 3-4 days, 70% ethyl alcohol - 95% alcohol - absolute alcohol (1 day each), methyl salicylate		Thermopla sticized (Injectable Technique)	L C
Mc Mu rtre y 199 2	Uni ted Stat es of Am eric a	In vit ro	>30	22	Microle kage	x7 illumin ated viewer	Sealer setting time -, India ink - 2 days,5% nitric acid, 100% ethyl alcohol, methyl salicylate.		Thermopla sticized (core carrier)	L C
Gil hoo ly 200 0	Uni ted Kin gdo m	In vit ro	Not state d	10 8	Microle kage/ Radiogr aphic quality	Stereo micros cope	Sealer setting - 3 days, India ink - 14 days, 11% nitric acid - 3–4 days, 70% ethyl alcohol - 95% alcohol - absolute alcohol (1 day each), methyl salicylate	Tu blis eal	Thermopla sticized (Injectable Technique)	L C

Zar	IRA	In	5-45	80	Void	CBCT	Not stated	AH	Thermopla	L
ei	N	vit			space			26	sticized	C
201		ro			•				(core	
1									carrier)	
Ala	TU	In	21-	13	Microle	Spectr	Sealer setting - 2 days, metheleyene blue -	ZO	Thermopla	L
ca	RK	vit	30	1	kage	ophoto	14 days, air dried- 1 day, 5% nitric acid- 1	E	sticized	C
m	EY	ro				metric	day	sea	(core	
199								ler	carrier)	
4										
Sch	GE	In	25 -	48	Void	Stereo	Sealer setting - 14 days	AH	Thermopla	L
äfer	RM	vit	35		space	micros		Plu	sticized,	C
201	AN	ro				cope		S	Single	
2	Y								cone	
Ali	TU	In	> 25	60	Void	Micro	Not stated	AH	Thermopla	L
m	RK	vit			space	CT		Plu	sticized	C
202	EY	ro						S	(Injectable	
0									Technique,	
									core	
									carrier),	
									Single	
									cone	
Şım	TU	In	17-	20	Void	Micro	Sealer setting - 7 days	AH	Thermopla	L
şek	RK	vit	38		space	CT		Plu	sticized	C
201	EY	ro						S	(Injectable	
7									Technique)	

Table 2: Risk of bias assessment

Study ID	Presence	Descriptio	Randomisa	Root	Use of	Time for	Blinding	Risk
•	of	n of	tion	canal	obturating	evaluation of	of	
	control	sample		proced	material	outcome	outcome	
	group	size		ure	according to		assessor	
		calculation		perfor	manufacture			
				med by a	r's instructions			
				single	instructions			
				operat				
				or				
Abarca 2001	YES	NO	NO	YES	YES	YES	NO	Medium risk
Barkins 1992	YES	NO	NO	YES	YES	YES	NO	Medium risk
Dummer 1994	YES	NO	NO	NO	YES	NO	NO	High risk
Lares 1990	YES	NO	NO	NO	YES	YES	NO	Medium risk
Perez 2007	YES	NO	YES	YES	YES	YES	NO	Medium risk
Schäfer 2002	YES	NO	YES	YES	YES	YES	NO	Medium risk
Kersten 1986	YES	NO	NO	NO	NO	YES	YES	Medium risk
Gilhooly 2001	YES	NO	YES	YES	YES	YES	NO	Medium risk
McMurtrey 1992	YES	NO	YES	NO	NO	YES	YES	Medium risk
Gilhooly 2000	YES	NO	YES	YES	YES	YES	NO	Medium risk
Zarei 2011	YES	NO	YES	YES	YES	NO	YES	Medium risk
Alacam 1994	YES	NO	NO	NO	NO	YES	NO	High risk
Schäfer 2012	YES	NO	NO	YES	NO	YES	YES	Medium risk
Alim 2020	YES	NO	NO	NO	YES	NO	NO	High risk
Şımşek 2017	YES	NO	NO	NO	NO	YES	NO	High risk