

Morphological and Histological Features of Placenta in Women with Gestational Diabetes Mellitus and Hypertension and its Association with Perinatal Outcome: A study Protocol

Farzana Jailani Manchankop¹, Dr. Ravindra Vedpathak², Dr. Nishigandha Sadamate³, Dr. Rakesh Kumar Jha⁴, Dr. Shyambabu Prasad Rauniyar⁵

¹PhD Scholar, Department of Anatomy, Jawaharlal Nehru Medical College, Datta Meghe institute of Higher Education and Research, Sawangi (M), Wardha, Email: farzana.farajm@gmail.com

ABSTRACT

The placenta is a key fetomaternal organ, and its structural changes mirror maternal disease and influence neonatal outcomes. Gestational diabetes mellitus (GDM) and hypertensive disorders of pregnancy (HDP) commonly alter placental morphology and histology, leading to adverse perinatal outcomes. This prospective observational study will analyze 90 placentae (30 GDM, 30 HDP, 30 controls) for gross parameters (weight, size, infarcts, calcifications) and histological features (villous immaturity, syncytial knots, fibrinoid necrosis, chorangiosis, villous hypoplasia). GDM is expected to correlate with macrosomia and NICU admissions, while HDP is linked to growth restriction, preterm birth, and low Apgar scores.

KEYWORDS: Placenta, GDM, HDP, Morphology, Histology, Perinatal outcome

How to Cite: Farzana Jailani Manchankop, Dr. Ravindra Vedpathak, Dr. Nishigandha Sadamate, Dr. Rakesh Kumar Jha, Dr. Shyambabu Prasad Rauniyar, (2025) Morphological and Histological Features of Placenta in Women with Gestational Diabetes Mellitus and Hypertension and its Association with Perinatal Outcome: A study Protocol, Vascular and Endovascular Review, Vol.8, No.2s, 255-257.

INTRODUCTION

The placenta is a transient but vital fetomaternal organ that mediates nutrient, gaseous, and waste exchange, while also reflecting maternal health and pathological alterations during pregnancy. Its morphology and histology undergo dynamic changes in response to maternal metabolic and vascular conditions, directly influencing perinatal outcomes. 1

Gestational diabetes mellitus (GDM) and hypertensive disorders of pregnancy (HDP), including gestational hypertension and preeclampsia, are common complications associated with significant maternal and perinatal morbidity and mortality. GDM, characterized by maternal glucose intolerance, leads to hyperglycemia and hyperinsulinemia in the fetus, whereas HDP is marked by vascular dysfunction and placental hypoperfusion.2

Morphologically, GDM placentas are often enlarged and thickened with villous immaturity and intervillous congestion, while hypertensive placentas tend to be smaller, irregular, and show infarctions and calcifications.3 Histologically, GDM is associated with villous immaturity, increased syncytial knots, fibrinoid necrosis, and thickened basement membranes, whereas HDP shows villous hypoplasia, accelerated maturation, and spiral artery atherosis. 4

These pathological changes contribute to adverse outcomes—fetal macrosomia and birth trauma in GDM, and intrauterine growth restriction, preterm birth, and perinatal asphyxia in HDP. Hence, systematic evaluation of placental morphology and histology is essential for understanding disease mechanisms, predicting neonatal outcomes, and guiding perinatal care.

AIM AND OBJECTIVES

Aim

To evaluate the gross Morphological and Histological Features of Placenta in Women with Gestational Diabetes Mellitus and Hypertension and its Association with Perinatal Outcome

Objectives

1. To study gross placental changes (weight, size, thickness, infarcts, calcifications, cord insertion) in GDM and HDP versus normal pregnancies.

²Associate professor, Department of Anatomy, Jawaharlal Nehru Medical College, Datta Meghe institute of Higher Education and Research, Sawangi (M), Wardha, Email: vedbhagy@gmail.com

³Associate professor, Department of Anatomy, Jawaharlal Nehru Medical College, Datta Meghe institute of Higher Education and Research, Sawangi (M), Wardha, Email: sadamatenishi@gmail.com

⁴Assistant professor, Department of Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe institute of Higher Education and Research, Sawangi (M), Wardha, Email: jhaarakesh1993@gmail.com

⁵Assistant professor, Department of Anatomy, Datta Meghe Medical College, Wanadongri, Datta Meghe institute of Higher Education and Research, Sawangi (M), Wardha, Email: shyambaburauniyar@gmail.com

- 2. To analyze histological alterations (villous immaturity, syncytial knots, fibrinoid necrosis, chorangiosis, infarction, distal villous hypoplasia) in GDM and HDP.
- 3. To compare and differentiate placental findings between GDM and HDP.

REVIEW OF LITERATURE

The placenta is the key interface between maternal and fetal circulation; structural and vascular abnormalities reflect maternal metabolic and vascular disease, mediating adverse perinatal outcomes. Both GDM and HDP cause distinct gross and histopathological changes that correlate with fetal growth, preterm birth, neonatal complications, and perinatal mortality. 2,5

Placental changes in GDM:

Grossly, placentas are often heavier and thicker, sometimes with larger lobulation and surface area. Microscopically, findings include villous immaturity, villous edema, chorangiosis, intervillous fibrin deposition, and variable syncytial knot changes. These alterations are linked with macrosomia, neonatal hypoglycemia, and higher NICU admissions, though severity varies with glycemic control and treatment.6

Placental changes in HDP/preeclampsia:

Placentas are usually smaller with reduced surface area, infarcts, and retroplacental hematoma. Histological hallmarks include maternal vascular malperfusion (MVM): decidual arteriopathy, infarcts, fibrinoid necrosis, syncytial knots, and villous hypoplasia. These correlate with FGR, preterm birth, low Apgar scores, and increased neonatal morbidity.7

Mechanistic links:

In GDM, hyperglycemia and altered insulin signaling affect villous maturation, vascularization, and nutrient transfer, predisposing to macrosomia and metabolic dysregulation. 8 In HDP, abnormal spiral artery remodeling leads to placental hypoxia and oxidative stress, producing MVM lesions and impaired fetal growth. 9

Evidence and gaps:

Studies consistently associate GDM placental changes with macrosomia and metabolic complications, and HDP lesions with FGR and preterm birth. 10 However, comparative studies evaluating GDM, HDP, combined pathology, and controls are limited. Variability in sampling, definitions, and lack of standardized scoring hinder comparability. Few studies stratify findings by treatment or disease control, leaving gaps in understanding disease—placenta—outcome relationships. 3,4,11

MATERIAL AND METHODS

Study Design: Prospective, comparative, observational study.

Place of study: The Study will be conducted in the Department of Anatomy.

Study population: Women delivering at Acharya Vinobha Bhave Rural Hospital during the study period. Placentae will be collected immediately after delivery for gross and histological evaluation, processed and reported per **Amsterdam/RCPath/CAP** guidance.

GROUPS

Group I (GDM): Placenta from women diagnosed with GDM using standard criteria (75-g OGTT per WHO 2013/IADPSG, or as per ADA Standards).

•Group II (Hypertension in Pregnancy): Placenta from women with pregnancy-induced hypertension, pre-eclampsia, or chronic hypertension per ACOG/ISSHP definitions.

•Group III (Controls): Placenta from normotensive, non-diabetic women with uncomplicated term pregnancies.

Study period: 3 years.

Sample size: Total 90 placenta (30 GDM, 30 hypertensive, 30 controls) for comparative analysis.

Placental handling & histology: Placentae will undergo immediate grossing (weight, size, thickness, infarcts, calcification, cord insertion) and standardized histologic sampling (cord, membranes, full-thickness blocks) per Amsterdam 2016 and RCPath/CAP guidelines, with reporting based on standardized lesion terminology (e.g., MVM). 12

METHODOLOGY

Inclusion criteria

1. Pregnant women aged 18-45 years.

- 2. Singleton pregnancy.
- 3. Gestational age \geq 28 weeks at delivery.
- 4. Women diagnosed with Gestational Diabetes Mellitus (GDM) as per standard guidelines.

Exclusion criteria

- 1. Pre-gestational diabetes mellitus.
- 2. Chronic hypertension predating pregnancy.
- 3. Major fetal congenital anomaly.
- 4. Intrauterine fetal demise before labor.

EXPECTED OUTCOME

Placentas in GDM are anticipated to show increased weight, thickness, villous immaturity, chorangiosis, and fibrin deposition, correlating with macrosomia, neonatal hypoglycemia, and higher NICU admissions. In HDP/preeclampsia, placentas are likely smaller with infarcts, syncytial knots, and vascular malperfusion, linked to growth restriction, low APGAR, preterm birth, and NICU admissions. Combined GDM with hypertension may demonstrate mixed pathology with the poorest perinatal outcomes. 7

REFERENCES

- Vornic I, Buciu V, Furau CG, Zara F, Novacescu D, Barb AC, Cumpanas AA, Latcu SC, Sas I, Serban D, Cut TG, Dumitru CS. The Interplay of Molecular Factors and Morphology in Human Placental Development and Implantation. Biomedicines. 2024 Dec 20;12(12):2908. doi: 10.3390/biomedicines12122908. PMID: 39767812; PMCID: PMC11673845
- 2. Jiang L, Tang K, Magee LA, von Dadelszen P, Ekeroma A, Li X, Zhang E, Bhutta ZA. A global view of hypertensive disorders and diabetes mellitus during pregnancy. Nat Rev Endocrinol. 2022 Dec;18(12):760-775. doi: 10.1038/s41574-022-00734-y. Epub 2022 Sep 15. PMID: 36109676; PMCID: PMC9483536.
- 3. Ehlers E, Talton OO, Schust DJ, Schulz LC. Placental structural abnormalities in gestational diabetes and when they develop: A scoping review. Placenta. 2021 Dec;116:58-66. doi: 10.1016/j.placenta.2021.04.005. Epub 2021 Apr 26. PMID: 33958235; PMCID: PMC9295324.
- 4. Arcot A, Walker RE, Gallagher K, Goldstein JA, Gernand AD. Gestational diabetes mellitus and vascular malperfusion lesions in the placenta: A systematic review and meta-analysis. Int J Gynaecol Obstet. 2025 Sep;170(3):1071-1083. doi: 10.1002/ijgo.70127. Epub 2025 Apr 15. PMID: 40231765; PMCID: PMC12374022.
- 5. Liu Y, Li D, Wang Y, Qi H, Wen L. Impact of Gestational Diabetes and Hypertension Disorders of Pregnancy on Neonatal Outcomes in Twin Pregnancies Based on Chorionicity. J Clin Med. 2023 Jan 31;12(3):1096. doi: 10.3390/jcm12031096. PMID: 36769744; PMCID: PMC9917532.
- Buhary BM, Almohareb O, Aljohani N, Alzahrani SH, Elkaissi S, Sherbeeni S, Almaghamsi A, Almalki M. Glycemic control and pregnancy outcomes in patients with diabetes in pregnancy: A retrospective study. Indian J Endocrinol Metab. 2016 Jul-Aug;20(4):481-90. doi: 10.4103/2230-8210.183478. PMID: 27366714; PMCID: PMC4911837.
- McBride CA, Bernstein IM, Sybenga AB, McLean KC, Orfeo T, Bravo MC. Placental Maternal Vascular Malperfusion is Associated with Prepregnancy and Early Pregnancy Maternal Cardiovascular and Thrombotic Profiles. Reprod Med (Basel). 2022 Mar;3(1):50-61. doi: 10.3390/reprodmed3010006. Epub 2022 Mar 8. PMID: 36923963; PMCID: PMC10012330.
- 8. Hernández-Baraza L, Brito-Casillas Y, Valverde-Tercedor C, Recio C, Fernández-Pérez L, Guerra B, Wägner AM. Mechanisms of Fetal Overgrowth in Gestational Diabetes: The Potential Role of SOCS2. Nutrients. 2025 Apr 30;17(9):1519. doi: 10.3390/nu17091519. PMID: 40362828; PMCID: PMC12073545.
- 9. Di Martino DD, Avagliano L, Ferrazzi E, Fusè F, Sterpi V, Parasiliti M, Stampalija T, Zullino S, Farina A, Bulfamante GP, Di Maso M, D'Ambrosi F. Hypertensive Disorders of Pregnancy and Fetal Growth Restriction: Clinical Characteristics and Placental Lesions and Possible Preventive Nutritional Targets. Nutrients. 2022 Aug 10;14(16):3276. doi: 10.3390/nu14163276. PMID: 36014782; PMCID: PMC9414322.
- 10. Field CP, Cleary EM, Thung SF, et al. Pregestational Diabetes Mellitus. [Updated 2025 Mar 3]. In: Feingold KR, Ahmed SF, Anawalt B, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK572754/
- 11. Ilekis JV, Tsilou E, Fisher S, Abrahams VM, Soares MJ, Cross JC, Zamudio S, Illsley NP, Myatt L, Colvis C, Costantine MM, Haas DM, Sadovsky Y, Weiner C, Rytting E, Bidwell G. Placental origins of adverse pregnancy outcomes: potential molecular targets: an Executive Workshop Summary of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Am J Obstet Gynecol. 2016 Jul;215(1 Suppl):S1-S46. doi: 10.1016/j.ajog.2016.03.001. Epub 2016 Mar 10. PMID: 26972897; PMCID: PMC4925329.
- 12. Raymond W. Redline, Sanjita Ravishankar, Christina M. Bagby, Shahrazad T. Saab, Shabnam Zarei, Four major patterns of placental injury: a stepwise guide for understanding and implementing the 2016 Amsterdam consensus, Modern Pathology, Volume 34, Issue 6, 2021. Pages 1074-1092.