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ABSTRACT

Diabetic retinopathy (DR) is one of the primary reasons of vision loss conditions, and the prevention of irreparable loss is
essential. The study involves deep learning models with applications to the detection of automatic DR of retinal fundus images,
the purpose of which is to help specialists make a more accurate decision and enhance the accuracy of diagnoses. Four large -
scale deep learning networks were tested by five severities of retina penalty namely CNN, ResNet50, DenseNet121 and
InceptionV3 architecture on a sampled data set comprising 35,000 retina images. Preprocessing of data, additional data, and
transfer learning were also implemented to improve model generalization. They were proven to be capable of 90.8% testing
accuracy and 0.92 AUC-ROC with experimental results indicating CNN as a baseline. The RN50 saw a better increase in detection
to 91.9% and 0.93 AUC-ROC, with DenseNetl121 once again making a jump of 92.6% and 0.94 AUC-ROC for detection. The
model that best did its work, InceptionV3 had the highest test accuracy, the model returned a cross of 93.2% and AUC-ROC was
0.95 that truly differentiated all levels of DR phases: Mild level, Severe level, and Proliferative. The article notes that many deep
learning models, especially InceptionV3 and DenseNetl21, are capable of autonomously diagnosing DR and reducing the
workload of clinical staff, and they can enhance early treatment. These research results have proved the possibility of Al-based
retomic ophthalmic systems being helpful tools in enhancing patient outcomes.
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INTRODUCTION

One of the most common complications of diabetes mellitus is Diabetic Retinopathy (DR), which is also a major cause of
blindness and vision loss in the world. According to the estimates of the World Health Organization, more than 422 million
people worldwide live with diabetes, and a number of these individuals are susceptible to the occurrence of DR. It is
important to diagnose DR at a young age because with the appropriate response in office, the patient can significantly
improve their vision, thereby avoiding severe damage to the sight [1]. Conventionally, ophthalmologists or trained
specialists examine retinal fundus with the manual diagnostic technique. Nevertheless, the procedure is time-consuming,
subjective, and tends to inter and intra-observer. Presumed novelties in the field of artificial intelligence (Al) and deep
learning have demonstrated enormous potential in medical image recognition by facilitating the automated, fast, and
exceptionally exact identification of multiple diseases. The convolutional neural networks (CNNs) that form deep learning
models have shown exceptional performance such as identifying complex patterns on retinal images that otherwise are
likely to be invisible to the human eye [3]. With the help of these Al-based methods, they can detect the early signs of DR
with high accuracy, treat it proactively and better manage patients. In this study, the author investigates a system
development in profound learning-based to identify diabetic retinopathy at the onset and therefore improve clinical
decision-making. The advanced image processing method and CNN architecture proposed as the suggested approach are
combined together and designed to categorize retinal images based on the severity of DR. Moreover, it does not solely
focus on the accuracy of detection but also interpretability as well, meaning that clinicians can rely on and respond to the
Al-generated insights. This study aims to alleviate diagnostic workload, minimize the aspect of human error, and implement
timely interventions with Al so that the quality of care given to diabetic patients can be improved.
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RELATED WORKS

The field of ophthalmology and the early identification of diabetic retinopathy (DR) using the latest methods of image analysis
is fast evolving due to artificial intelligence (AI). The diagnostic systems that rely on artificial intelligence integrate machine
learning and deep learning algorithms to support clinicians in effective and prompt diagnosis and eventually enhance clinical
decision-making. Recently, the benefits and the drawbacks of Al in ophthalmology have been highlighted with a focus on its
massive capacity to help in eliminating diagnostic errors, automating routine tasks, and offering decisions support when handling
complicated cases [15]. There are a few studies that tackle Al-based clinical decision support in diabetes management to reveal
the way in which precision medicine could be improved among older adults by predicting disease effortlessly on a case-by-case
basis [16]. Machine learning can not just be applied to detect diseases by other means than it has additionally been developed to
be applied in more extensive medical care purposes like detecting fraud and assessing risks making it apparent that Al can be
used versatiliably in medicine and healthcare in general [17]. Particularly, retinal images have been used to conduct stroke risk
assessment and management, which revealed that there is a possibility to use ophthalmic Al applications in areas beyond DR
activities towards general monitoring of vascular health [18]. Transfer learning methods have attracted considerable attention in
the case of diabetic retinopathy, given their capability of employing the existing convolutional neural networks (CNNs) to analyze
the retinal image. Systematic review has indicated that the deep transfer learning cells are more effective at detecting DRS by
effectively extracting features out of small-sized datasets and in addressing image-quality variability [19]. Moreover, the
incorporation of Al-based applications in pharmaceutical research efforts has illuminated how predictive analytics and diagnostics
through images can revolutionize the patient discovery of drugs and an individualized treatment approach [20]. Recently, it was
shown that precise diagnostic methods and surgeries in interconnected musculoskeletal and visual systems have been developed
through the use of machine learning. The developments highlight how Al can be utilized to deliver a more thorough and multi-
modal diagnostic experience through visual and clinical procedures [21]. The use of the fundus image to detect DR and Al has
gained significant research interest, and studies argue that a deep learning model outperforms the classical manual grading method
by being more sensitive and specific when it comes to disease severity classification [22].

Although Al technologies are developed, there are several barriers to the adoption of Al-assisted diagnoses in hospitals. Studies
have revealed such tough issues as the integration of software, acceptance by clinicians, compliance to regulation, and
infrastructure constraints, as well as facilitators of the phase, such as training, involvement of people in the process, and
optimization of the workflow [23]. Additionally, the recent introduction of Al used with the optical coherence tomography (OCT)-
based diagnostic system has further expanded the capabilities of diagnosing retinal anomalies and necessitated a strong security
system together with the superior feature extracted techniques to ensure clinical credibility [24]. In optometric diagnostics and
research, Al has also shown its potential to identify and forecast via deep-learning and time-series predictive measurements of
retinal health and its condition [25]. Lately observed studies in the recognition of DR relying on transfer learning deep neural
networks have proven numerous values of reliable awareness and high accuracy founded on the premise that well-constructed
models could correctly categorize retinal image into various severity features to guide the course of early interventions [26].
Generally, reviewed literature shows that Al-based methods, specifically deep learning and transfer learning, are sulphurate
towards precise, completely robotized, and massive DR detection. Nonetheless, the incorporated considerations to achieve
successful implementation involve issues associated with clinical integration, infrastructures, and interpretability, indicating that
future studies should emphasize incorporation of Al in clinical practice to guarantee that the diagnosis remains of high quality.

METHODS AND MATERIALS
1. Data Collection and Preprocessing

In constructing and testing the proposed deep learning-based diabetic retinopathy detection system, retina fundus image data were
used. The publicly available Kaggle Diabetic Retinopathy Detection Dataset, including 35,000 retinal images per labeled in five
severity classes (No DR (0), Mild (1), Moderate (2), Severe (3), and Proliferative DR (4)) served as the primary source of the
data. The photographs were taken while held at different levels and at diverse resolutions, imitating the real-world clinical image.

The images were preprocessed to normalize them and improve the performance of the models. The successive steps involved
resizing of all the images to 224 by 224 pixels, normalization (to range [0,1]) of pixel values, and contrast addition through the
histogram equalization [4]. Basically, data augmentation methods were used: rotation, flipping, and zooming to expand the
amount of data and limit overfitting. The final data had been divided into 70 percent (train) set, 15 percent (validation) set, and
15 (test) set.

2. Deep Learning Algorithms
2.1 Convolutional Neural Network (CNN)

The majority of image classification applications involving medical imaging use Convolutional Neural Networks as their
foundation. Automated people against protocols CNNs are used to extract hierarchical features on retina images via convolution,
pooling and activation functions. Convolutional layers identify any local structure like a blood vessel or microaneurysm and
pooling layers decrease space and computing. Fully connected layers at the end perform classification based on the extracted
features [5]. For diabetic retinopathy detection, CNNss can identify subtle signs of early-stage DR that are often missed by human
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experts. The model was trained using the Adam optimizer with a learning rate of 0.0001 and categorical cross-entropy loss. CNN
achieved high accuracy due to its ability to capture spatial dependencies within retinal images.

“Input: Retinal images
Preprocess images (resize, normalize)
for each epoch:
for each batch:
Apply convolution layers
Apply ReL U activation
Apply max pooling
Flatten feature maps
Pass through fully connected layers
Compute categorical cross-entropy loss
Backpropagate and update weights
Output: Predicted DR class”

2.2 ResNet50 (Residual Network)

ResNet50 introduces residual connections that help mitigate the vanishing gradient problem in deep networks. By using skip
connections, the network can learn identity mappings that improve training efficiency and performance on complex datasets.
ResNet50 comprises 50 layers including convolutional, batch normalization, and activation layers [6]. In DR detection, ResNet50
is particularly effective at distinguishing subtle features across multiple severity levels. Transfer learning was employed by
initializing the model with weights pretrained on ImageNet and fine-tuning it on the retinal dataset, which significantly reduced
training time and improved convergence.

“Input: Retinal images
Load pretrained ResNet50 weights
Replace final fully connected layer with 5-class output
for each epoch:
for each batch:
Forward pass through residual blocks
Apply skip connections
Compute categorical cross-entropy loss
Backpropagate and update weights
Output: Predicted DR class”

2.3 DenseNet121

DenseNet121 is characterized by dense connections between layers, where each layer receives feature maps from all preceding
layers. This architecture promotes feature reuse and reduces the number of parameters, enhancing model efficiency. DenseNet121
effectively captures fine-grained retinal features such as microaneurysms and hemorrhages, which are crucial for early DR
detection. For this study, DenseNet121 was trained using the Adam optimizer with early stopping based on validation loss [7].
The dense connectivity ensures better gradient flow and faster convergence, making it highly suitable for complex medical
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imaging tasks.

“Input: Retinal images

Preprocess images (resize, normalize)

Initialize DenseNet121 architecture

for each epoch:

for each batch:

Pass input through dense blocks
Concatenate feature maps from previous layers
Apply batch normalization and ReLU
Flatten features and pass to classifier
Compute loss and backpropagate

Output: Predicted DR class”

2.4 InceptionV3

InceptionV3 uses parallel convolutional filters of varying sizes within the same layer to capture multi-scale features from images.
This approach allows the network to extract both fine and coarse details simultaneously, which is critical for DR detection where
lesions vary in size. InceptionV3 was fine-tuned with transfer learning and trained with data augmentation to improve robustness
[8]. Dropout layers were incorporated to prevent overfitting. In clinical application, InceptionV3 provides high sensitivity and
specificity in classifying DR severity, making it an effective decision-support tool.

“Input: Retinal images

Preprocess images (resize, normalize)

Load pretrained InceptionV3 weights

Replace top layer for 5-class DR classification

for each epoch:

for each batch:

Pass input through parallel convolution filters
Concatenate outputs
Apply pooling, dropout, and fully connected layers
Compute categorical cross-entropy loss
Backpropagate to update weights

Output: Predicted DR class”

3. Experimental Setup

“All experiments were conducted on a workstation with NVIDIA RTX 3090 GPU, 64 GB RAM, and Intel i9 CPU. Models
were implemented using TensorFlow 2.10 and Keras API. Training was performed over 50 epochs with batch size 32, using
early stopping to prevent overfitting [9]. Evaluation metrics included accuracy, precision, recall, F1-score, and AUC-ROC”.

RESULTS AND ANALYSIS
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1. Experimental Setup

The study evaluated the effectiveness of four deep learning models—CNN, ResNet50, DenseNet121, and InceptionV3—for early
detection of diabetic retinopathy (DR). “All experiments were conducted on a workstation equipped with NVIDIA RTX 3090
GPU, Intel i9 CPU, and 64 GB RAM”. The models were implemented using TensorFlow 2.10 and Keras API, with Python
3.10 as the development environment [10].

Input retinal g
fundus i nmage D\\ i1 \NN Feature
extraction AGF

Trnmcd Data

Deep CNN Feature
classification selection RF

(&)
nptl mization

Figure 1: “Optimized deep CNN for detection and classification of diabetic retinopathy and diabetic macular edema”

Grade of DR

Grade of DME

The dataset comprised 35,000 retinal fundus images, categorized into five classes representing DR severity: No DR, Mild,
Moderate, Severe, and Proliferative DR. To standardize input, all images were resized to 224x224 pixels, and pixel values were
normalized to the range [0,1]. Histogram equalization was applied to enhance contrast, while data augmentation techniques such
as rotation (£20°), flipping, and zooming (0.8—1.2%) were used to improve generalization. The data was divided into three (3)
categories: 70 percent training data, 15 percent validation data, and an amount of 15 percent testing data.

Each and every model was trained over 50 epochs with a batch size of 32 and optimized with Adam and categorical cross-entropy
loss function [11]. Early ending, which relies on validation loss, avoided overfitting. The accuracy, precision, recall and F1-score,
as well as AUC-ROC, were used to evaluate the models, and the training time and number of parameters were summarized means
of evaluating computational efficiency.

2. CNN Experiments and Results

CNN model was used as a base line. The architecture included three convolutional neuron layers with the ReLU activation and
frame-pooling, and two classification fully connected layers.

Table 1: CNN Performance Metrics

Metric Training Validation Testing
Accuracy (%) 94.5 91.2 90.8
Precision (%) 93.8 90.5 89.7
Recall (%) 924 89.8 88.9
F1-Score (%) 93.1 90.1 89.3
AUC-ROC 0.96 0.93 0.92

The CNN showed good No DR and Moderate DR performance. Yet the model fared poorly in Severe and Proliferative classes
presumably because it could not adequately describe difficult microvascular phenomena [12]. The CNN had its limitation but
nevertheless served as the good benchmark to compare to other developed architectures.
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Figure 2: “Diabetic Retinopathy Classification Using Hybrid Deep Learning Approach”
3. ResNet50 Experiments and Results

ResNet50 used residual connectivity to overcome the problem of vanishing gradient, and enabled further extraction of features.
Pretrained ImageNet weight Transfer learning increased convergence and accelerated training [13].

Table 2: ResNet50 Performance Metrics

Metric Training Validation Testing
Accuracy (%) 96.2 92.8 91.9
Precision (%) 95.7 91.9 91.0
Recall (%) 94.9 91.2 90.3
F1-Score (%) 953 91.5 90.6
AUC-ROC 0.97 0.94 0.93

ResNet50 outperformed the baseline CNN across all metrics, particularly in early-stage DR detection. The residual connections
allowed the network to learn identity mappings, improving gradient flow and enabling efficient training of deep architectures
[14].

4. DenseNet121 Experiments and Results

DenseNet121 connected each layer to every other layer, enhancing feature reuse and gradient flow. This architecture efficiently
captured subtle microaneurysms and hemorrhages crucial for DR classification.

Table 3: DenseNet121 Performance Metrics

Metric Training | Validation Testing
Accuracy (%) 95.8 93.5 92.6
Precision (%) 95.2 92.7 91.8
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Recall (%) 94.6 922 911
Fl-Score (%) | 94.9 92.4 91.4
AUC-ROC 0.97 0.95 0.94

DenseNet121 achieved higher accuracy in Severe and Proliferative DR detection compared to CNN and ResNet50
connectivity facilitated robust feature propagation, enabling better discrimination between DR stages.
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Figure 3: “Deep learning algorithm predicts diabetic retinopathy progression in individual patients”

5. InceptionV3 Experiments and Results

InceptionV3 used parallel convolutional filters of varying sizes to capture multi-scale features, improving sensitivity to lesions
of varying dimensions. Fine-tuning with data augmentation enhanced generalization [27].

Table 4: InceptionV3 Performance Metrics

Metric Training | Validation | Testing
Accuracy (%) | 96.5 94.0 93.2
Precision (%) | 96.0 932 92.5
Recall (%) 95.4 92.7 91.9
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F1-Score (%)

95.7

92.9

922

AUC-ROC

0.98

0.96

0.95

InceptionV3 outperformed all other models in both overall and class-wise performance. The multi-scale filters allowed the
network to detect both fine microaneurysms and larger hemorrhages simultaneously, making it highly suitable for clinical decision

support.

6. Comparative Analysis Across Models

Table 5: Comparative Performance of All Models

Model | Testin | Preci | Re | F1- | AU | Traini | Parame
g sion | call | Sco | C- | ng ters
Accur | (%) (% | re RO | Time | (million
acy ) (% | C (min) | s)
(%) )
CNN 90.8 89.7 88. | 89. |09 |45 32
9 3 2
ResNet | 91.9 91.0 90. [90. |09 |60 25.6
50 3 6 3
Dense | 92.6 91.8 91. [ 91. |09 |65 8.0
Netl21 1 4 4
Incepti | 93.2 92.5 91. [ 92. |09 |70 23.8
onV3 9 2 5

The comparative table demonstrates that InceptionV3 achieved the highest testing accuracy and AUC, followed closely by
DenseNet121. While CNN was computationally efficient, it lagged in detecting Severe and Proliferative DR. DenseNet121 and
InceptionV3 achieved a balance between accuracy and robustness, with InceptionV3 being superior for multi-scale feature

detection [28].
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’ Filtering
Morphological Operation
Segmentation

Figure 4: “Detection of diabetic retinopathy using a fusion of textural and ridgelet features of retinal images and

7. Class-wise Performance Analysis

Class-wise evaluation was conducted to examine the ability of each model to detect different DR severity levels.
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Mode | No Mil | Moder | Seve | Prolifer

1 DR d ate re ative
(%) | (%) | (%) %) | (%)

CNN | 94 88 89 85 82

ResN | 95 90 91 87 84

et50

Dense | 95 91 92 88 85

Netl12

1

Incept | 96 92 93 89 87

ionV3

The results indicate that all models performed best for No DR. Mild and Moderate DR detection improved with deeper
architectures, while Severe and Proliferative DR remained challenging. InceptionV3 and DenseNet121 were most effective at
distinguishing early and advanced DR stages [29].

8. Training Time and Computational Efficiency

Analysis of training time and model complexity revealed that CNN was fastest due to fewer parameters, whereas InceptionV3
required more computational resources but offered superior performance. DenseNet121 provided a reasonable compromise with
fewer parameters than ResNet50 and competitive accuracy [30].

9. Key Findings

InceptionV3 achieved the highest overall testing accuracy (93.2%) and AUC-ROC (0.95), demonstrating excellent ability to
detect DR at early and advanced stages.

DenseNet121 showed robust performance with slightly lower accuracy but fewer parameters than ResNet50 and InceptionV3,
making it computationally efficient.

ResNet50 improved over the CNN baseline due to residual connections but was slightly less effective than DenseNet121 and
InceptionV3 in classifying Severe DR.

CNN performed adequately as a baseline, particularly for No DR, but struggled with complex patterns in advanced DR cases.

Evaluation by class revealed that multi-scale and densely connected networks had a considerable alternative to reoccurrence on
the Mild, Severe, and Proliferative DR, in comparison to shallow CNNs.

Time and size analysis of training models and time pointed out the trade-offs between the detection performance and the
computational efficiency.

CONCLUSION

This study aimed to determine how the early-stage diagnosis of diabetic retinopathy (DR) can be accomplished employing
methods of artificial intelligence and deep learning in order to improve clinical practice. This research with four deep learning
models based on ANNs (CNN, ResNet50, DenseNet121, and InceptionV3) revealed that superior networks are capable of
assessing carefully retina fundus scans and categorize cases of DR through high accuracy. The experiments revealed that although
the baseline CNN was as good as it was, enhancements in the network depth, e.g. DenseNet121 and InceptionV3 performed better
and even better on the overall performance as well as performance per class; especially on the difficult such as Severe and
Proliferative DR. The highest testing accuracy and AUC-ROC of InceptionV3 add significance to multi-scale feature extraction
to identify small retinal shifts. The paper has also highlighted the importance of data preprocessing, augmentation, and transfer
learning in enhancing both model performance and transfer, enabling Al models to perform successfully on heterogeneous and
small datasets. In a comparative analysis, it was identified that Al-driven models can substantially minimize diagnostic mistakes,
righteous and reliable evaluations, and assist patients with initiatives to act promptly, which may result in positive healthcare
outcomes. Although the computational needs and implementing Al into clinical practice may still be considered viable to this
day, findings highlight the possibility of Al use to help ophthalmologists with early DR diagnosis and feedback. All in all, this
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study confirms that deep learning is a safe, reproducible, and clinically applicable method to automated DR diagnosis, and it can
be used to develop Al-specific retinal imaging systems that will be deployed in real-world clinical settings to improve patient
care performance and disease coping

REFERENCES

L.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Aiya, A.J., Wani, N., Ramani, M., Kumar, A., Pant, S., Kotecha, K., Kulkarni, A. & Al-Danakh, A. 2025, "Optimized
deep learning for brain tumor detection: a hybrid approach with attention mechanisms and clinical explainability",
Scientific Reports (Nature Publisher Group), vol. 15, no. 1, pp. 31386.
Al-Dekah, A. & Sweileh, W. 2025, "Role of artificial intelligence in early identification and risk evaluation of non-
communicable diseases: a bibliometric analysis of global research trends", BMJ Open, vol. 15, no. 5.
Camacho Lopez, P.A., Latorre-Arevalo, M., Camacho-Naranjo, P. & Villabona-Florez, S. 2025, "Global Research
Trends in Artificial Intelligence and Type 2 Diabetes Mellitus: A Bibliometric Perspective", Cureus, vol. 17, no. 7, pp.
19.
Cansu, Y.E. 2025, "Democratizing Glaucoma Care: A Framework for AI-Driven Progression Prediction Across Diverse
Healthcare Settings", Journal of Ophthalmology, vol. 2025.
Chinta, S.V., Wang, Z., Palikhe, A., Zhang, X., Kashif, A., Smith, M.A., Liu, J. & Zhang, W. 2025, "Al-driven
healthcare: A review on ensuring fairness and mitigating bias", PLOS Digital Health, vol. 4, no. 5, pp. 28.
Deniz, A., Aslihan, O., Evrim, C., Ercan, K. & Baris, B. 2025, "A Narrative Review of Artificial Intelligence in MRI-
Guided Prostate Cancer Diagnosis: Addressing Key Challenges", Diagnostics, vol. 15, no. 11, pp. 1342.
Eren, O. 2025, "Artificial Intelligence in Clinical Medicine: Challenges Across Diagnostic Imaging, Clinical Decision
Support, Surgery, Pathology, and Drug Discovery", Clinics and Practice, vol. 15, no. 9, pp. 169.
Giovanni, C., Conti, A., Gabriele, C., Massimiliano, P., Fabio, P., Stefano, M., Matteo, R. & Masini, A. 2025, "Barriers
and Facilitators to Artificial Intelligence Implementation in Diabetes Management from Healthcare Workers’
Perspective: A Scoping Review", Medicina, vol. 61, no. 8, pp. 1403.
Giuseppe, M., Basso, M.G., Elena, C. & Antonino, T. 2025, "Artificial Intelligence in the Diagnostic Use of Transcranial
Doppler and Sonography: A Scoping Review of Current Applications and Future Directions", Bioengineering, vol. 12,
no. 7, pp. 681.

Goktas, P. & Grzybowski, A. 2025, "Shaping the Future of Healthcare: Ethical Clinical Challenges and Pathways to
Trustworthy AI", Journal of Clinical Medicine, vol. 14, no. 5, pp. 1605.
Grover, S. & Gupta, S. 2024, "Automated diagnosis and classification of liver cancers using deep learning techniques:
a systematic review", SN Applied Sciences, vol. 6, no. 10, pp. 508.
Guangqi, H., Chen, X. & Caizhi, L. 2025, "Al-Driven Wearable Bioelectronics in Digital Healthcare", Biosensors, vol.
15, no. 7, pp. 410.

Gundlack, J., Thiel, C., Negash, S., Buch, C., Apfelbacher, T., Denny, K., Christoph, J., Mikolajczyk, R., Unverzagt,
S. & Frese, T. 2025, "Patients’ Perceptions of Artificial Intelligence Acceptance, Challenges, and Use in Medical Care:
Qualitative Study", Journal of Medical Internet Research, vol. 27.

Hamza Yousif, B.A., Alsadig Abdalwahab Abdallah, A.b., Ibrahim Abdelhalim, A.A., Mohammedosman, M.E., Hafez
Sadaka, S.I. & Abdelaziz Alzobeir, S.A. 2025, "Transparency and Validity of Artificial Intelligence Applications in
Pediatric Diabetes: A Systematic Review", Cureus, vol. 17, no. 7, pp. 13.

Hariton-Nicolae Costin, Fira, M. & Goras, L. 2025, "Artificial Intelligence in Ophthalmology: Advantages and
Limits", Applied Sciences, vol. 15, no. 4, pp. 1913.
Hu, J., Ren, L., Wang, T. & Yao, P. 2025, "Artificial Intelligence-Assisted Clinical Decision-Making: A Perspective
on Advancing Personalized Precision Medicine for Elderly Diabetes Patients", Journal of Multidisciplinary Healthcare,
vol. 18, pp. 4643-4651.
Kamran, R. & Shah, M. 2025, "Next-Generation Machine Learning in Healthcare Fraud Detection: Current Trends,
Challenges, and Future Research Directions", Information, vol. 16, no. 9, pp. 730.
Khalafi, P., Morsali, S., Hamidi, S., Ashayeri, H., Sobhi, N., Pedrammehr, S. & Jafarizadeh, A. 2025, "Aurtificial
intelligence in stroke risk assessment and management via retinal imaging", Frontiers in Computational Neuroscience,

Kokila, A., Shankar, R. & Duraisamy, S. 2025, "DEEP TRANSFER LEARNING FOR RETINAL IMAGE
ANALYSIS IN DIABETES PREDICTION: A SYSTEMATIC REVIEW", International Journal of Advanced Research
in Computer Science, vol. 16, no. 2, pp. 101-107.

Kumar, P., Benu, C., Preeti, A., Rupali, C., Sushma, D., Parejiya, P.B. & Gupta, M.M. 2025, "Advanced Artificial
Intelligence Technologies Transforming Contemporary Pharmaceutical Research", Bioengineering, vol. 12, no. 4, pp.
363.

Kumar, R., Chirag, G., Sekhar, T.C., Swapna, V., Tami, H., Sporn, K., Ethan, W., Ong, J., Nasif, Z. & Alireza, T.
2025, "Advancements in Machine Learning for Precision Diagnostics and Surgical Interventions in Interconnected
Musculoskeletal and Visual Systems", Journal of Clinical Medicine, vol. 14, no. 11, pp. 3669.

Lara, A., Husnain, A., Mushtaq, M.M., Maham, M., Mohammad, B., Rahma, A., Maryyam, L., Bokhari Syed, F.H.,
Hasan, A.H. & Fazeel, A. 2024, "Artificial Intelligence (Al)-Enhanced Detection of Diabetic Retinopathy From Fundus
Images: The Current Landscape and Future Directions", Cureus, vol. 16, no. 8.

Liao, X., Chen, Y., Jin, F., Zhang, J. & Liu, L. 2024, "Barriers and facilitators to implementing imaging-based
diagnostic artificial intelligence-assisted decision-making software in hospitals in China: a qualitative study using the
updated Consolidated Framework for Implementation Research", BMJ Open, vol. 14, no. 9.

64
VASCULAR & ENDOVASCULAR REVIEW

www.VERjournal.com


http://www.verjournal.com/

Al powered Early Detection of diabetic retinopathy: A Deep Learning Approach for improved Clinical Decision-Making.

24.

25.

26.

217.

28.

29.

30.

Liew, A. & Sos, A. 2025, "Comprehensive Survey of OCT-Based Disorders Diagnosis: From Feature Extraction
Methods to Robust Security Frameworks", Bioengineering, vol. 12, no. 9, pp. 914.

Luis, F.F.M.S., Sanchez-Tena, M.A., Alvarez-Peregrina, C., Sanchez-Gonzalez, J. & Martinez-Perez, C. 2025, "The
Role of Atrtificial Intelligence in Optometric Diagnostics and Research: Deep Learning and Time-Series Forecasting
Applications", Technologies, vol. 13, no. 2, pp. 77.

Mane, D., Ashtagi, R., Suryawanshi, R., Kaulage, A.N., Hedaoo, A.N., Kulkarni, P.V. & Gandhi, Y. 2024, "Diabetic
Retinopathy Recognition and Classification Using Transfer Learning Deep Neural Networks", Traitement du Signal,
vol. 41, no. 5, pp. 2683-2691.

Marta, N., Agris, V., Dusanka, B., Yuri, M. & Andrejs, R. 2025, "Al-Powered Stroke Diagnosis System:
Methodological Framework and Implementation", Future Internet, vol. 17, no. 5, pp. 204.

Mary, A.R. & Kavitha, P. 2024, "Diabetic retinopathy disease detection using shapley additive ensembled densenet-
121 resnet-50 model", Multimedia Tools and Applications, vol. 83, no. 27, pp. 69797-69824.

Olawade, D.B., Weerasinghe, K., Mathugamage Don Dasun, E.M., Odetayo, A., Aderinto, N., Teke, J. & Boussios, S.
2025, "Enhancing Ophthalmic Diagnosis and Treatment with Artificial Intelligence", Medicina, vol. 61, no. 3, pp. 433.

Perez, K., Wisniewski, D., Ari, A., Lee, K., Lieneck, C. & Ramamonjiarivelo, Z. 2025, "Investigation into Application
of Al and Telemedicine in Rural Communities: A Systematic Literature Review", Healthcare, vol. 13, no. 3, pp. 324.

65
VASCULAR & ENDOVASCULAR REVIEW

www.VERjournal.com


http://www.verjournal.com/

