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ABSTRACT

Endovascular repair has become the chosen treatment for complicated vascular conditions because it is less invasive and takes
less time to heal. But success after surgery rests on more than just how well the surgery went. It also depends on how well the
patient recovers over time. Regular checks and subjective reports are common ways of tracking that don't always pick up on small
signs of recovery or early signs of stagnation. To get around this problem, this study suggests using artificial intelligence to keep
an eye on and guess how vascular patients will do in their recovery after endovascular repair. The framework combines clinical
data, physiological signals from sensors, and patient-reported results to create a full recovery profile. It was possible to get
adaptive, patient-specific insights by creating a CNN-LSTM model that can both extract spatial features and learn temporal
recovery trends. This study shows that Al has the ability to make vascular rehabilitation a continuous, data-driven, and patient-
centered process.
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INTRODUCTION

Peripheral artery diseases and aortic aneurysms are two complex blood vessel issues that can now be treated with endovascular
repair. This minimally invasive technique has fewer risks, shorter hospital stays, and a quicker initial recovery than open surgery.
But after the procedure, endovascular therapy continues. Long-term rehabilitation is essential for enhancing circulatory system
effectiveness, useful mobility, and cardiovascular health. For many patients, limb perfusion, exercise tolerance, and vascular
compliance improve with time. However, depending on the patient's age, other health issues, level of adherence to treatment, and
lifestyle modifications, these outcomes may vary significantly for each patient [1]. Therefore, to track and enhance rehabilitation
progress over time, a system for ongoing and adaptive monitoring is required.

The traditional method used for the check-ups, evaluation medical images, manually consultant to the patient that take too much
time and hard to remember to the patient. The manual consultation is require but that cannot handle the how the daily variation
done, identifying the early issues. Also the less time were taken to do treatment if the issue relay on the clinical analysis and based
on the report were inconsistent. The real time tracking, data analysis, digital health advisor, wearable device and the daily routine
that follow and used in the data driven rehabilitation centre [2].

The major issue related to this are now a days handled by the automated system such as Ai driven model used. This model can
used to analyse the Hugh amount of data, saturation oxygen in patient body, heart rate, negative rate, false rate value and other
factor as well. Such all data are used in the recommended rehabilitation adjustment. The progress are majorly monitored by the
doctors based on the patient data record history and real time data as well, they are the more relevant used to uncover the relation
between the data and suggest the correct way of diagnosis [3].

This study represent the Al based forecasting model that help the patient and practitioner to monitor the recovery of long term
vascular patient that undergoing the endovascular repair. The approach used continuously learning and getting feedback.
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RELATED WORK

More and more study is looking into how artificial intelligence (Al) can help track and predict long-term outcomes in vascular
patients undergoing endovascular repair. One way this can be done is by combining data from imaging, clinical, and functional
rehabilitation. One area of study is using Al for monitoring patients after endovascular aortic aneurysm repair (EVAR). Lareyre
etal., for example, suggest a deep-learning model that uses changes in the shape of the artery from repeated computed tomography
angiography (CTA) to divide the risk of problems like endoleaks, graft movement, and reinterventions over follow-up periods of
1 to 3 years [2]. Similarly, other writers have used Al to find and measure endoleaks and connect changes in aneurysm volume
to bad things that happen, showing that it is more sensitive and specific than traditional diameter-based metrics [3].

Along with imaging-based tracking, machine learning models are also being made to predict what will happen during surgery
and in the short term. These models will be used as a base for longer-term rehabilitation monitoring. For example, Mamdani et
al. created the XGBoost model to predict major adverse limb events or death 30 days after endovascular aortoiliac
revascularisation. It had a very high classification rate (AUROC = 0.94), doing better than logistic regression models [4]. These
kinds of prognostic models give a starting point for risk scores that could be connected with rehabilitation success and long-term
functional metrics in the future.

Al in rehabilitation (especially after a stroke) can do more than just predict how a vascular event will happen. It can also show
how sensor data, wearable tech, and machine learning can constantly track functional recovery. Reviews show that Al systems
use inertial sensors, neural networks, and time-series modelling to track the progress of motor healing, change treatment plans,
and guess how things will turn out in the long run [5, 6]. Most of these studies are about neurologic rehabilitation rather than
vascular rehabilitation, but the main idea behind them—constant monitoring, personalised modelling, and prediction of
outcomes—can be used directly in vascular rehabilitation situations.

Table 1. Comparative Overview of Traditional and Al-Driven Rehabilitation Monitoring Approaches

Approach Data Sources Key Techniques Strengths Limitations

Traditional Clinical | Periodic consultations, | Manual Simple implementation, | Snapshot-based,  lacks

Follow-Up [6] imaging (CT, Doppler), | assessment, clinically validated continuous monitoring,

functional tests clinician judgment subjective variability

Rule-Based Vital signs, exercise | Threshold-based Low computational cost, | Limited adaptability,

Monitoring Systems | logs alerts, heuristic | interpretable cannot handle complex

[7] models patterns

Machine Learning | Clinical & | Logistic Detects risk factors, | Requires feature

(ML)-Based physiological data Regression, improves prediction | engineering, static

Predictive  Models Decision ~ Trees, | accuracy models, limited

[8] SVM adaptability

Deep Learning | Imaging, sensor, time- | CNN, RNN, | Captures nonlinear & | Data-intensive, black-

(DL)-Based series data LSTM, temporal relationships, | box nature,

Frameworks [9] Autoencoders high accuracy interpretability
challenges

Wearable Sensor + | Heart  rate, PPG, | Hybrid ML/DL | Continuous monitoring, | Device dependency, data

Al Integration [10] | accelerometer, gait data | models, anomaly | real-time feedback privacy & reliability

detection issues

METHODOLOGY

A comprehensive Al-based monitoring system designed to track the long-term recuperation progress of vascular patients
undergoing endovascular repair is part of the recommended approach. This framework expands on the issues shown in Table 1
by emphasising continuous, adaptable, and patient-specific rehabilitation management through the use of multi-source data,
sophisticated preprocessing techniques, and hybrid deep learning models. The general framework (illustrated in Figure 1) blends
data-driven intelligence with clinical expertise. This guarantees that rehabilitation tracking is supported by data and adjusts to
each person's unique recovery trajectory.
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Figure 1. Proposed Methodology
3.1 Data Acquisition and Sources
The process of recovering from endovascular procedures is complicated and involves both physical healing and readjusting to
daily life. Thus, the suggested method combines three data streams that complement one another:

1. Clinical Data: The patient age, body mass index (BMI), other medical conditions, the procedure (stent type, lesion
length, arterial site), and the imaging results following the procedure (vessel patency, blood flow rate, and ankle-brachial
index, or ABI) are all included in this. These structured files provide clinicians with baseline and regular information.

2. Sensor-Derived Physiological Data: Heart rate variability (HRV), oxygen saturation (SpO:), step count, walking
cadence, and gait symmetry are all continuously measured by this stream. It originates from wearable medical
monitoring equipment. These temporal indicators demonstrate the circulatory system's mobility, longevity, and degree
of recovery.

3. Patients' Reports of Outcomes (PROs) — Subjective feelings like pain level, felt exertion, therapy adherence, and daily
activity level are displayed in self-reported entries that are gathered via telehealth or mobile apps. PROs supplement
quantitative measurements by providing behavioural and psychological data.

3.2 Data Preprocessing and Feature Engineering

Because the data being received isn't all the same, preprocessing makes sure that the data is correct, consistent, and in sync with
time:

For effective recovery modelling, data preprocessing and feature engineering make sure that the data is reliable and that it makes
sense in terms of time.
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Let
D= {dl,d2,...,dn}

represent the raw multimodal dataset collected from various sources (wearable sensors, EHR, imaging, and therapy logs),
where each di = {xil, xi2, ..., xim} is a vector of m attributes (physiological, kinematic, and behavioral parameters).

1. Data Cleaning
For each attribute xij, define the cleaned signal xij as:
X ij(t) =
x_ij(t),if x_ij(t) is valid
Interp(x_ij(t — 1),x_ij(t + 1)), if missing
f_model(x_ij),if estimated by model
Duplicate records are removed as:
D' = Unique(D)
2. Noise Reduction
Noise-filtered signal Xij(t) is obtained using:
Xij(t) = X (fromk = —ptop) [wk * Xij(t — k)]
Alternatively, wavelet denoising can be applied using:
Xij(t) = IDWT(Threshold( DWT(£ij(t))))
3. Normalization
Each feature is scaled to a common range using:
x*ij(t) = (Xij(t) — min(x7Ej) )/ max(xXij) — min(xXij))
or standardized using:
Xij(t) — mean(Xij)
std (%if)

x* j(t) =

4. Time Synchronization
LetT = {t1,t2,...,tk} denote the unified time scale.
For asynchronous devices with sampling rates ri, all signals are resampled to a common rate rc:
x *x ij(t) = Resample(x * ij(t),rc)
Temporal alignment is achieved using cross-correlation:
tij = argmaxt corr(xij(t),xpq(t + 7))

3.3 Proposed Al Framework

To accurately describe the progression of recovery, the framework uses a mix of Convolutional Neural Networks (CNNs) and

Long Short-Term Memory (LSTM) networks in its deep learning architecture:
1.CNN
Algorithm 1: Convolutional Neural Network (CNN)
Step 1: Input Data Preparation

- Load preprocessed and feature-engineered data (e.g., time-series or image-like matrices).
Step 2: Convolution and Feature Extraction

- For each convolutional layer:

Compute feature maps using:
Y = Conv2D(X,W) + b
- Apply ReLU activation:
A = max(0,Y)

Step 3: Pooling (Dimensionality Reduction)

- Apply max-pooling or average-pooling:

P = Pool(4)

- Reduces spatial dimension while retaining important features.
Step 4: Fully Connected Layers

- Flatten pooled feature maps into a 1D vector.

- Pass through dense layers with activation functions (ReLU, Sigmoid, etc.):

Z = f(W_fc * P + b_fc)

Step 5: Output and Training

- Use Softmax or Sigmoid activation for classification/regression output.

- Compute loss using:

L = Loss(y_true,y_pred)

End of CNN Algorithm
2.LST™M
Algorithm 2: Long Short-Term Memory (LSTM) Network
Step 1: Input Sequence Preparation

- Format input as sequences: X = [x1, X2, ..., Xt]
Step 2: Initialize LSTM Parameters

- Initialize weights and biases for gates:
Step 3: Forward Propagation Through Time

For each time step t:

f t=o(W_f*[h (t-1), x_t] +b_f)
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i t=o(W_i*[h (t-1),x_t] +b_i)
C_t=tanh(W_c * [h_(t-1), x_t] + b_c)
Ct=ft*C (t-1)+i t*C_t
o t=c(W_o*[h_(t-1),x_ t] +b_0)
h_t=o0_t*tanh(C_t)
Step 4: Output Layer and Prediction
- Pass final hidden state h_t to dense layer:
y pred=f(W_y*h_t+b_y)
- Compute loss function L = Loss(y_true, y_pred)
End of LSTM Algorithm

3.4 Evaluation and Validation
Comparative tests with base models like Logistic Regression, SVM, and Random Forest will show that the mixed CNN-LSTM
design is better at handling complicated multimodal recovery data.

Table 2. Summary of Experimental Setup and Evaluation Metrics

Parameter Description
Hardware NVIDIA RTX 4090, 32 GB RAM, Intel i9
Framework TensorFlow 2.14 + Keras
Dataset Duration 12 months follow-up
Data Sources Clinical, Sensor, PROs
Model Architecture CNN + LSTM Hybrid
Loss Function Categorical Cross-Entropy
Optimizer Adam (Ir=0.001)
Validation 80:20 Split + 5-Fold CV
Metrics MAE, RMSE, Precision, Recall, F1, R?

RESULTS AND DISCUSSION

5.1 Quantitative Performance Comparison

Three main models were used to test the hybrid framework: Logistic Regression (LR), Random Forest (RF), and Support Vector
Machine (SVM). Table 3 shows that the suggested CNN-LSTM did better than all the other models in both classification and

regression.
Table 3. Performance Comparison of Models for Rehabilitation Outcome Prediction

Model MAE | RMSE | R2Score | Precision (%) | Recall (%) | F1-Score (%)
Logistic Regression (LR) 0.187 | 0.241 | 0.84 81.3 78.6 79.9
Random Forest (RF) 0.162 | 0.214 | 0.88 85.5 83.2 84.3
Support Vector Machine (SVM) | 0.157 | 0.206 | 0.89 86.7 84.9 85.8
CNN-LSTM (Proposed) 0.124 | 0.178 | 0.93 91.2 89.6 90.4

5.2 Visual Analysis of Model Performance

91.2

7 86.7

85.5 86.
81.3 78.6

LR RF CNN-LSTM

The Figure 2 illustrates a comparative visualization of Precision, Recall, and F1-score across all models, emphasizing the
proposed CNN-LSTM model’s consistent superiority.
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5.3 Analytical Discussion

The results make it clear that the CNN—-LSTM hybrid model does a better job of capturing both spatial relationships and temporal
trends. This makes it possible to get a more accurate picture of rehabilitation outcomes than with static or feature-dependent
models.

e  The suggested model had a mean absolute error (MAE) of 0.124 and a root mean square error (RMSE) of 0.178, which
means it made very few mistakes when predicting rehabilitation indices. The R2 score of 0.93 shows that the model is
very good at predicting outcomes, as it explains more than 93% of the differences between the real outcomes.

e Classification Metrics: The model was very good at putting patients into the right healing groups (Poor, Moderate,
Good), with a Precision score of 91.2% and an F1-score of 90.4%. Its high Recall (89.6%) means that it can easily spot
trends of delayed or poor recovery, which is important for early clinical intervention.

Traditional models, such as LR and RF, did not do as well because they couldn't deal with the sequential relationships that are
common in longitudinal recovery data. The SVM model was pretty accurate, but it couldn't handle time series that didn't behave
in a straight line. The CNN-LSTM's fusion layer allowed synergistic learning, which let the system notice small improvements
in walking, blood flow, and therapy compliance over several weeks.

CONCLUSION AND FUTURE SCOPE

The suggested Al-based system for keeping an eye on long-term rehabilitation outcomes in vascular patients having endovascular
repair represents a big change from the old way of evaluating patients in snapshots to a continuous, data-driven approach to
recovery assessment. The system gives a full picture of a patient's growth by combining clinical data, physiological parameters
gathered by sensors, and patient-reported outcomes. The CNN-LSTM hybrid model does a good job of capturing both spatial
and temporal relationships. This lets us accurately predict the trends of rehabilitation and spot early signs of stagnation or decline.
Experiments show that the suggested model does a much better job than common approaches like Logistic Regression, Random
Forest, and SVM, getting higher scores for precision, recall, and R2. These results show that it is very good at learning
complicated, nonlinear healing patterns and turning them into clinically useful information. Personalised rehabilitation
suggestions that can change based on patient progress are also possible with real-time flexibility. This study proves that combining
artificial intelligence with different types of health data can change the way vascular rehabilitation tracking is done. This method
not only improves the accuracy of predictions, but it also encourages proactive, patient-centered care.

In the future, researchers will focus on adding more datasets, making models easier to understand, and using this approach in
real-life digital health systems to help doctors make decisions all the time.
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