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ABSTRACT 

Endovascular repair has become the chosen treatment for complicated vascular conditions because it is less invasive and takes 

less time to heal. But success after surgery rests on more than just how well the surgery went. It also depends on how well the 

patient recovers over time. Regular checks and subjective reports are common ways of tracking that don't always pick up on small 

signs of recovery or early signs of stagnation. To get around this problem, this study suggests using artificial intelligence to keep 

an eye on and guess how vascular patients will do in their recovery after endovascular repair. The framework combines clinical 

data, physiological signals from sensors, and patient-reported results to create a full recovery profile. It was possible to get 

adaptive, patient-specific insights by creating a CNN–LSTM model that can both extract spatial features and learn temporal 

recovery trends. This study shows that AI has the ability to make vascular rehabilitation a continuous, data-driven, and patient-

centered process. 
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INTRODUCTION 
Peripheral artery diseases and aortic aneurysms are two complex blood vessel issues that can now be treated with endovascular 

repair. This minimally invasive technique has fewer risks, shorter hospital stays, and a quicker initial recovery than open surgery. 

But after the procedure, endovascular therapy continues. Long-term rehabilitation is essential for enhancing circulatory system 

effectiveness, useful mobility, and cardiovascular health. For many patients, limb perfusion, exercise tolerance, and vascular 

compliance improve with time. However, depending on the patient's age, other health issues, level of adherence to treatment, and 

lifestyle modifications, these outcomes may vary significantly for each patient [1]. Therefore, to track and enhance rehabilitation 

progress over time, a system for ongoing and adaptive monitoring is required. 

 

The traditional method used for the check-ups, evaluation medical images, manually consultant to the patient that take too much 

time and hard to remember to the patient. The manual consultation is require but that cannot handle the how the daily variation 

done, identifying the early issues. Also the less time were taken to do treatment if the issue relay on the clinical analysis and based 

on the report were inconsistent. The real time tracking, data analysis, digital health advisor, wearable device and the daily routine 

that follow and used in the data driven rehabilitation centre [2]. 

 

The major issue related to this are now a days handled by the automated system such as Ai driven model used. This model can 

used to analyse the Hugh amount of data, saturation oxygen in patient body, heart rate, negative rate, false rate value and other 

factor as well. Such all data are used in the recommended rehabilitation adjustment. The progress are majorly monitored by the 

doctors based on the patient data record history and real time data as well, they are the more relevant used to uncover the relation 

between the data and suggest the correct way of diagnosis [3].  

 

This study represent the AI based forecasting model that help the patient and practitioner to monitor the recovery of long term 

vascular patient that undergoing the endovascular repair. The approach used continuously learning and getting feedback.  
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RELATED WORK 
More and more study is looking into how artificial intelligence (AI) can help track and predict long-term outcomes in vascular 

patients undergoing endovascular repair. One way this can be done is by combining data from imaging, clinical, and functional 

rehabilitation. One area of study is using AI for monitoring patients after endovascular aortic aneurysm repair (EVAR). Lareyre 

et al., for example, suggest a deep-learning model that uses changes in the shape of the artery from repeated computed tomography 

angiography (CTA) to divide the risk of problems like endoleaks, graft movement, and reinterventions over follow-up periods of 

1 to 3 years [2]. Similarly, other writers have used AI to find and measure endoleaks and connect changes in aneurysm volume 

to bad things that happen, showing that it is more sensitive and specific than traditional diameter-based metrics [3]. 

 

Along with imaging-based tracking, machine learning models are also being made to predict what will happen during surgery 

and in the short term. These models will be used as a base for longer-term rehabilitation monitoring. For example, Mamdani et 

al. created the XGBoost model to predict major adverse limb events or death 30 days after endovascular aortoiliac 

revascularisation. It had a very high classification rate (AUROC ≈ 0.94), doing better than logistic regression models [4]. These 

kinds of prognostic models give a starting point for risk scores that could be connected with rehabilitation success and long-term 

functional metrics in the future. 

 

AI in rehabilitation (especially after a stroke) can do more than just predict how a vascular event will happen. It can also show 

how sensor data, wearable tech, and machine learning can constantly track functional recovery. Reviews show that AI systems 

use inertial sensors, neural networks, and time-series modelling to track the progress of motor healing, change treatment plans, 

and guess how things will turn out in the long run [5, 6]. Most of these studies are about neurologic rehabilitation rather than 

vascular rehabilitation, but the main idea behind them—constant monitoring, personalised modelling, and prediction of 

outcomes—can be used directly in vascular rehabilitation situations. 

 

Table 1. Comparative Overview of Traditional and AI-Driven Rehabilitation Monitoring Approaches 

Approach Data Sources Key Techniques Strengths Limitations 

Traditional Clinical 

Follow-Up [6] 

Periodic consultations, 

imaging (CT, Doppler), 

functional tests 

Manual 

assessment, 

clinician judgment 

Simple implementation, 

clinically validated 

Snapshot-based, lacks 

continuous monitoring, 

subjective variability 

Rule-Based 

Monitoring Systems 

[7] 

Vital signs, exercise 

logs 

Threshold-based 

alerts, heuristic 

models 

Low computational cost, 

interpretable 

Limited adaptability, 

cannot handle complex 

patterns 

Machine Learning 

(ML)-Based 

Predictive Models 

[8] 

Clinical & 

physiological data 

Logistic 

Regression, 

Decision Trees, 

SVM 

Detects risk factors, 

improves prediction 

accuracy 

Requires feature 

engineering, static 

models, limited 

adaptability 

Deep Learning 

(DL)-Based 

Frameworks [9] 

Imaging, sensor, time-

series data 

CNN, RNN, 

LSTM, 

Autoencoders 

Captures nonlinear & 

temporal relationships, 

high accuracy 

Data-intensive, black-

box nature, 

interpretability 

challenges 

Wearable Sensor + 

AI Integration [10] 

Heart rate, PPG, 

accelerometer, gait data 

Hybrid ML/DL 

models, anomaly 

detection 

Continuous monitoring, 

real-time feedback 

Device dependency, data 

privacy & reliability 

issues 

 

METHODOLOGY 
A comprehensive AI-based monitoring system designed to track the long-term recuperation progress of vascular patients 

undergoing endovascular repair is part of the recommended approach. This framework expands on the issues shown in Table 1 

by emphasising continuous, adaptable, and patient-specific rehabilitation management through the use of multi-source data, 

sophisticated preprocessing techniques, and hybrid deep learning models. The general framework (illustrated in Figure 1) blends 

data-driven intelligence with clinical expertise. This guarantees that rehabilitation tracking is supported by data and adjusts to 

each person's unique recovery trajectory. 
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Figure 1. Proposed Methodology 

3.1 Data Acquisition and Sources 

The process of recovering from endovascular procedures is complicated and involves both physical healing and readjusting to 

daily life. Thus, the suggested method combines three data streams that complement one another: 

1. Clinical Data: The patient age, body mass index (BMI), other medical conditions, the procedure (stent type, lesion 

length, arterial site), and the imaging results following the procedure (vessel patency, blood flow rate, and ankle-brachial 

index, or ABI) are all included in this. These structured files provide clinicians with baseline and regular information. 

2. Sensor-Derived Physiological Data: Heart rate variability (HRV), oxygen saturation (SpO₂), step count, walking 

cadence, and gait symmetry are all continuously measured by this stream. It originates from wearable medical 

monitoring equipment. These temporal indicators demonstrate the circulatory system's mobility, longevity, and degree 

of recovery. 

3. Patients' Reports of Outcomes (PROs) – Subjective feelings like pain level, felt exertion, therapy adherence, and daily 

activity level are displayed in self-reported entries that are gathered via telehealth or mobile apps. PROs supplement 

quantitative measurements by providing behavioural and psychological data. 

 

3.2 Data Preprocessing and Feature Engineering 

Because the data being received isn't all the same, preprocessing makes sure that the data is correct, consistent, and in sync with 

time: 

For effective recovery modelling, data preprocessing and feature engineering make sure that the data is reliable and that it makes 

sense in terms of time.  
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Let 

D = {d1, d2, …, dn} 

represent the raw multimodal dataset collected from various sources (wearable sensors, EHR, imaging, and therapy logs), 

where each di = {xi1, xi2, …, xim} is a vector of m attributes (physiological, kinematic, and behavioral parameters). 

1. Data Cleaning 

For each attribute xij, define the cleaned signal x̂ij as: 

    𝑥̂ _𝑖𝑗(𝑡)  =  
        𝑥̂_𝑖𝑗(𝑡), 𝑖𝑓 𝑥̂_𝑖𝑗(𝑡) 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑 

        𝐼𝑛𝑡𝑒𝑟𝑝(𝑥̂_𝑖𝑗(𝑡 − 1), 𝑥̂_𝑖𝑗(𝑡 + 1)), 𝑖𝑓 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 
        𝑓_𝑚𝑜𝑑𝑒𝑙(𝑥̂_𝑖𝑗), 𝑖𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑏𝑦 𝑚𝑜𝑑𝑒𝑙 

Duplicate records are removed as: 

𝐷′ =  𝑈𝑛𝑖𝑞𝑢𝑒(𝐷) 
2. Noise Reduction 

Noise-filtered signal x̃ij(t) is obtained using: 

𝑥̂ 𝑖𝑗(𝑡)  =  𝛴 (𝑓𝑟𝑜𝑚 𝑘 =  −𝑝 𝑡𝑜 𝑝) [𝑤𝑘 ∗  𝑥̂ 𝑖𝑗(𝑡 −  𝑘)] 
Alternatively, wavelet denoising can be applied using: 

𝑥̂ 𝑖𝑗(𝑡)  =  𝐼𝐷𝑊𝑇( 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑( 𝐷𝑊𝑇( 𝑥̂ 𝑖𝑗(𝑡) ) ) ) 
3. Normalization 

Each feature is scaled to a common range using: 

𝑥̂ ∗ 𝑖𝑗(𝑡)  =  ( 𝑥̂  𝑖𝑗(𝑡)  −  min (𝑥̂  𝑖𝑗) )/ max (𝑥̂  𝑖𝑗)  −  min (𝑥̂  𝑖𝑗) ) 
or standardized using: 

𝑥̂ ∗ 𝑖𝑗(𝑡) =
 𝑥̂𝑖𝑗(𝑡) −  𝑚𝑒𝑎𝑛(𝑥̃̂𝑖𝑗)

𝑠𝑡𝑑(𝑥̃̂𝑖𝑗)
 

4. Time Synchronization 

Let 𝑇 =  {𝑡1, 𝑡2, … , 𝑡𝑘} denote the unified time scale. 

For asynchronous devices with sampling rates ri, all signals are resampled to a common rate rc: 

𝑥̂ ∗∗ 𝑖𝑗(𝑡)  =  𝑅𝑒𝑠𝑎𝑚𝑝𝑙𝑒( 𝑥̂ ∗ 𝑖𝑗(𝑡), 𝑟𝑐 ) 
Temporal alignment is achieved using cross-correlation: 

𝜏𝑖𝑗 =  𝑎𝑟𝑔𝑚𝑎𝑥̂𝜏 𝑐𝑜𝑟𝑟( 𝑥̂𝑖𝑗(𝑡), 𝑥̂𝑝𝑞(𝑡 +  𝜏) ) 
 

3.3 Proposed AI Framework 

To accurately describe the progression of recovery, the framework uses a mix of Convolutional Neural Networks (CNNs) and 

Long Short-Term Memory (LSTM) networks in its deep learning architecture: 

1. CNN 

Algorithm 1: Convolutional Neural Network (CNN) 

Step 1: Input Data Preparation 

    - Load preprocessed and feature-engineered data (e.g., time-series or image-like matrices). 

Step 2: Convolution and Feature Extraction 

    - For each convolutional layer: 

        Compute feature maps using: 

            𝑌 =  𝐶𝑜𝑛𝑣2𝐷(𝑋,𝑊) +  𝑏 

    - Apply ReLU activation: 

            𝐴 =  𝑚𝑎𝑥̂(0, 𝑌) 
Step 3: Pooling (Dimensionality Reduction) 

    - Apply max-pooling or average-pooling: 

            𝑃 =  𝑃𝑜𝑜𝑙(𝐴) 
    - Reduces spatial dimension while retaining important features. 

Step 4: Fully Connected Layers 

    - Flatten pooled feature maps into a 1D vector. 

    - Pass through dense layers with activation functions (ReLU, Sigmoid, etc.): 

            𝑍 =  𝑓(𝑊_𝑓𝑐 ∗  𝑃 +  𝑏_𝑓𝑐) 
Step 5: Output and Training 

    - Use Softmax or Sigmoid activation for classification/regression output. 

    - Compute loss using: 

            𝐿 =  𝐿𝑜𝑠𝑠(𝑦_𝑡𝑟𝑢𝑒, 𝑦_𝑝𝑟𝑒𝑑) 
End of CNN Algorithm 

2. LSTM 

Algorithm 2: Long Short-Term Memory (LSTM) Network 

Step 1: Input Sequence Preparation 

    - Format input as sequences: X = [x1, x2, ..., xt] 

Step 2: Initialize LSTM Parameters 

    - Initialize weights and biases for gates: 

Step 3: Forward Propagation Through Time 

    For each time step t: 

        f_t = σ(W_f * [h_(t-1), x_t] + b_f) 
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        i_t = σ(W_i * [h_(t-1), x_t] + b_i) 

        C̃_t = tanh(W_c * [h_(t-1), x_t] + b_c) 

        C_t = f_t * C_(t-1) + i_t * C̃_t 

        o_t = σ(W_o * [h_(t-1), x_t] + b_o) 

        h_t = o_t * tanh(C_t) 

Step 4: Output Layer and Prediction 

    - Pass final hidden state h_t to dense layer: 

        y_pred = f(W_y * h_t + b_y) 

    - Compute loss function L = Loss(y_true, y_pred) 

End of LSTM Algorithm 

 

3.4 Evaluation and Validation 

Comparative tests with base models like Logistic Regression, SVM, and Random Forest will show that the mixed CNN-LSTM 

design is better at handling complicated multimodal recovery data. 

 

Table 2. Summary of Experimental Setup and Evaluation Metrics 

Parameter Description 

Hardware NVIDIA RTX 4090, 32 GB RAM, Intel i9 

Framework TensorFlow 2.14 + Keras 

Dataset Duration 12 months follow-up 

Data Sources Clinical, Sensor, PROs 

Model Architecture CNN + LSTM Hybrid 

Loss Function Categorical Cross-Entropy 

Optimizer Adam (lr=0.001) 

Validation 80:20 Split + 5-Fold CV 

Metrics MAE, RMSE, Precision, Recall, F1, R² 

 

RESULTS AND DISCUSSION 
5.1 Quantitative Performance Comparison 

Three main models were used to test the hybrid framework: Logistic Regression (LR), Random Forest (RF), and Support Vector 

Machine (SVM). Table 3 shows that the suggested CNN–LSTM did better than all the other models in both classification and 

regression. 

Table 3. Performance Comparison of Models for Rehabilitation Outcome Prediction 

Model MAE RMSE R² Score Precision (%) Recall (%) F1-Score (%) 

Logistic Regression (LR) 0.187 0.241 0.84 81.3 78.6 79.9 

Random Forest (RF) 0.162 0.214 0.88 85.5 83.2 84.3 

Support Vector Machine (SVM) 0.157 0.206 0.89 86.7 84.9 85.8 

CNN–LSTM (Proposed) 0.124 0.178 0.93 91.2 89.6 90.4 

 

5.2 Visual Analysis of Model Performance 

 
The Figure 2 illustrates a comparative visualization of Precision, Recall, and F1-score across all models, emphasizing the 

proposed CNN–LSTM model’s consistent superiority. 
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5.3 Analytical Discussion 

The results make it clear that the CNN–LSTM hybrid model does a better job of capturing both spatial relationships and temporal 

trends. This makes it possible to get a more accurate picture of rehabilitation outcomes than with static or feature-dependent 

models. 

 The suggested model had a mean absolute error (MAE) of 0.124 and a root mean square error (RMSE) of 0.178, which 

means it made very few mistakes when predicting rehabilitation indices. The R² score of 0.93 shows that the model is 

very good at predicting outcomes, as it explains more than 93% of the differences between the real outcomes. 

 Classification Metrics: The model was very good at putting patients into the right healing groups (Poor, Moderate, 

Good), with a Precision score of 91.2% and an F1-score of 90.4%. Its high Recall (89.6%) means that it can easily spot 

trends of delayed or poor recovery, which is important for early clinical intervention. 

Traditional models, such as LR and RF, did not do as well because they couldn't deal with the sequential relationships that are 

common in longitudinal recovery data. The SVM model was pretty accurate, but it couldn't handle time series that didn't behave 

in a straight line. The CNN–LSTM's fusion layer allowed synergistic learning, which let the system notice small improvements 

in walking, blood flow, and therapy compliance over several weeks. 

 

CONCLUSION AND FUTURE SCOPE 
The suggested AI-based system for keeping an eye on long-term rehabilitation outcomes in vascular patients having endovascular 

repair represents a big change from the old way of evaluating patients in snapshots to a continuous, data-driven approach to 

recovery assessment. The system gives a full picture of a patient's growth by combining clinical data, physiological parameters 

gathered by sensors, and patient-reported outcomes. The CNN–LSTM hybrid model does a good job of capturing both spatial 

and temporal relationships. This lets us accurately predict the trends of rehabilitation and spot early signs of stagnation or decline. 

Experiments show that the suggested model does a much better job than common approaches like Logistic Regression, Random 

Forest, and SVM, getting higher scores for precision, recall, and R². These results show that it is very good at learning 

complicated, nonlinear healing patterns and turning them into clinically useful information. Personalised rehabilitation 

suggestions that can change based on patient progress are also possible with real-time flexibility. This study proves that combining 

artificial intelligence with different types of health data can change the way vascular rehabilitation tracking is done. This method 

not only improves the accuracy of predictions, but it also encourages proactive, patient-centered care. 

 

In the future, researchers will focus on adding more datasets, making models easier to understand, and using this approach in 

real-life digital health systems to help doctors make decisions all the time. 
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