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ABSTRACT

Background and Objective: Bayesian Optimization (BO) is a powerful strategy for optimizing complex black-box functions and
is widely used for hyperparameter tuning in machine learning. Traditional BO methods commonly use Gaussian Processes (GPs),
Random Forests (RF), or Bayesian Neural Networks (BNNs) as surrogate models. However, they struggle to scale in hybrid and
high-dimensional search spaces and often fail to capture the spatial hierarchies required for image-based tasks such as those
handled by Convolutional Neural Networks (CNNs). This study aims to overcome these limitations by proposing an Enhanced
Bayesian Optimization (EBO) framework specifically designed to optimize CNN hyperparameters for brain tumor detection and
classification using MRI data. Methods: A Bayesian Convolutional Neural Network (BCNN) is introduced as a novel surrogate
model to address the hybrid and high-dimensional hyperparameter search spaces of CNNs. Its performance is benchmarked
against GP, RF, and BNN, each paired with five acquisition functions: Expected Improvement (EI), Upper Confidence Bound
(UCB), Probability Improvement (PI), Entropy Search (ES), and Knowledge Gradient (KG). Experiments on two MRI datasets -
binary (tumor vs. non-tumor) and three-class (glioma, meningioma, pituitary), show BCNN consistently outperforms other
surrogates. To further improve validation accuracy, the two best acquisition functions are hybridized with Bayesian CNN to form
the EBO framework. Results: The Bayesian CNN surrogate outperformed GP, RF, and BNN across acquisition functions, with
ES and KG showing the best mean performance. The proposed hybrid BCNN_ES+KG (EBO) achieved the highest validation
accuracies of 97.0% (Dataset D1) and 92.13% (Dataset D2), surpassing single acquisition functions. Using the optimized
hyperparameters, Optimized CNN 1 reached 98.0% accuracy and Optimized CNN 2 achieved 95.79% accuracy, both
outperforming existing state-of-the-art methods. Conclusions: The proposed EBO framework, using Bayesian CNN as a surrogate
model combined with a hybrid ES+KG acquisition strategy, effectively optimizes high-dimensional CNN hyperparameters. The
optimized CNNs achieved superior performance, validating the effectiveness and generalizability of EBO for brain tumor
detection and classification using MRI data.
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INTRODUCTION

Optimization plays a pivotal role across diverse areas of scientific and engineering disciplines, including operations research,
control systems, artificial intelligence, and computational biology. In recent years, its significance has grown substantially in the
domains of Machine Learning (ML) and Deep Learning (DL), where model performance is often governed by the selection of
optimal hyperparameters and architectural configurations. Many modern ML models involve objective functions that are non-
convex, non-differentiable, noisy, or expensive to evaluate, making them difficult to optimize using classical gradient-based
methods. As a result, researchers have increasingly relied on metaheuristic and probabilistic optimization techniques that can
efficiently search large and complex parameter spaces without relying on explicit gradient information. Within the domain of
deep learning, especially with CNNs, effective optimization of architectural and training hyperparameters can significantly
improve accuracy, generalization, and computational efficiency across various tasks, including image classification, object
detection, and medical diagnosis [1 - 4]. Consequently, robust optimization techniques have become a cornerstone in the
development and deployment of high-performing ML models.

CNNs have emerged as a powerful deep learning architecture, particularly effective in processing and analyzing image data due
to their capacity to represent spatial hierarchies and patterns. In the domain of medical imaging, CNNs have been widely adopted
for applications including classification, detection, and segmentation of abnormalities, including brain tumors. Brain tumor
detection and classification using MRI are critical tasks, where accurate and timely diagnosis greatly enhances treatment
effectiveness and patient survival. CNN-based models have shown remarkable performance in these applications through
automatically learning discriminative characteristics from raw imaging data, thereby minimizing reliance on handcrafted feature
engineering [5, 6]. However, the effectiveness of CNNs strongly depends on the selection of optimal hyperparameters such as
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the number of convolutional blocks, filter sizes, learning rate, dropout rate, batch size, and the choice of optimizer. These
hyperparameters influence both the architectural design and the training dynamics of the network, thereby playing a critical role
in determining its generalization ability. The optimization of these parameters becomes significantly more challenging in high-
dimensional and hybrid search spaces, which may include a mix of continuous, discrete, and categorical variables. In such
scenarios, the interaction between hyperparameters is often highly interdependent and dataset-specific, making the search for
optimal configurations more difficult. Manual tuning or traditional approaches like grid and random search are inefficient and
computationally expensive, especially when navigating these complex search spaces. This limitation highlights the urgent need
for more advanced, scalable, and data-efficient optimization strategies capable of effectively exploring hybrid and high-
dimensional hyperparameter spaces [2, 3].

The interest in the hyperparameter optimization is strongly linked to the interest in developing dependable deep learning models
for a wide range of applications [7-13], and as the latest studies [14-18] show, the adjustment of hyperparameters can
significantly improve CNN’s performance. Numerous techniques exist for optimizing over hyperparameter settings, ranging
from straightforward processes like grid or random search [1] to more complex metaheuristic approaches like evolutionary
algorithms or Genetic Algorithms [19-23]. However, these methods typically demand a substantial number of evaluations, which
can be computationally prohibitive. In contrast, Bayesian Optimization provides an effective framework for global optimization,
particularly when dealing with costly, noisy, and black-box functions. By modeling uncertainty in a principled way, it enables a
natural trade-off between exploring novel regions of the search space and exploiting known promising regions. Bayesian
optimization [24, 25] has been broadly applied across various areas such as chemical design [26, 27], material science [28],
aerospace engineering [29], civil engineering [30], and hyperparameter optimization [31, 32]. BO is highly data-efficient, as it
incorporates prior knowledge about the objective function and strategically balances exploration (searching unknown areas) and
exploitation (refining known good areas). Formally, consider the maximization of an unknown, expensive-to-evaluate function:
x* = argmax f(x)
xe X indicate the decision/search space of interest, and x* is the global maximum

BO builds a probabilistic surrogate model that estimates the true objective function and utilizes this model to guide the search
for optimal configurations. BO begins with a prior distribution over the objective function and updates it using Bayes’ theorem
as new data is collected. This generates a posterior distribution that reflects an improved understanding of the function. An
acquisition function then evaluates where the next evaluation should occur by balancing exploration of uncertain regions and
exploitation of high-performing areas. This enables BO to make intelligent decisions about which configurations to test next,
even with a limited number of evaluations [33, 34]. In the context of tuning hyperparameters in convolutional neural networks,
where the search space is often hybrid and high-dimensional, BO has shown great promise. It efficiently navigates the complex
relationships between parameters such as filter sizes, dropout rate, learning rate, and optimizer type. By capturing these
dependencies and reducing the computational burden, BO enables the discovery of near-optimal architectures that generalize
well to unseen data [2, 3].

Despite the effectiveness of Bayesian Optimization in hyperparameter tuning, traditional BO methods face several limitations.
Gaussian Processes, commonly used as surrogate models, struggle to scale with larger datasets due to their high computational
cost. They also rely on assumptions that may not hold in complex search spaces involving both discrete and continuous
parameters. These issues lead to poor generalization and reduced efficiency in modeling the objective function [35, 36]. Another
challenge lies in the acquisition functions used to guide the search. A proper balance between exploration and exploitation is
critical. Over-exploitation can cause the model to get stuck in local optima, while over-exploration can waste computational
resources [33]. Moreover, standard BO lacks spatial and structural awareness, making it less effective in hybrid, hierarchical,
and high-dimensional search spaces often seen in many applications [37, 38]. These gaps highlight the need for advanced
optimization approaches that can scale efficiently, model complex functions accurately, and balance the exploration-exploitation
trade-off more effectively.

Hyperparameter optimization in CNNs becomes particularly challenging in high-dimensional and hybrid search spaces. As
Frazier [34] states that “developing Bayesian optimization methods that work well in high dimensions is of great practical and
theoretical interest”. As more complicated the models, the quantity of hyperparameters and the dimension of the search area in
hyperparameter optimization of machine learning models also grow [39]. Addressing the limitations of traditional Bayesian
Optimization is essential for advancing the effectiveness of convolutional neural networks in medical imaging. In brain tumor
classification, where accurate and timely diagnosis can significantly influence patient outcomes, even marginal improvements
in model performance are valuable. However, real-world datasets in this domain are often small, imbalanced, and high in
dimensionality, which makes the hyperparameter optimization task even more challenging. Efficient and scalable optimization
methods can enhance model generalization and reduce training time, enabling the deployment of more accurate and reliable
diagnostic tools in clinical settings.

The purpose of this study is to address the challenges of traditional BO such as scalability, limited generalization in hybrid/high-
dimensional spaces, and imbalance in exploration and exploitation when tuning CNN hyperparameters for brain tumor
classification across two publicly available datasets. The main contributions are:

. Introduce BCNN as a novel surrogate model for optimizing CNN hyperparameters in complex search spaces.
. Conducted comprehensive benchmarking of BCNN against GP, RF, and BNN across multiple acquisition functions.
. Introduced the Enhanced Bayesian Optimization (EBO) framework, which integrates BCNN with a hybrid ES+KG

acquisition strategy.
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. Developed optimized CNN architectures using hyperparameters identified by EBO for improved model design.

. Performed a comparison of the optimized CNN architectures with existing state of the art methods.

The rest of this paper proceeds the follows sections. The Background and Related Work section provides the theoretical
foundation, covering surrogate models, acquisition functions, and prior studies on BO, including its applications in CNN
hyperparameter optimization for medical imaging. The Proposed Methodology describes the dataset, objective function, search
space, and details of the EBO algorithm. The Results and Discussions section presents the experimental findings, including the
selection of the optimal surrogate model and acquisition functions, evaluation of the proposed BCNN_ES+KG framework,
construction of optimized CNN models for dataset_1 and dataset_2, and comparative analysis with existing methods. Finally,
the Conclusion and Future Work section summarizes the main findings and proposes directions for further study.

BACKGROUND AND RELATED WORK

1.1. Background

The roots of Bayesian optimization trace back to the work of Harold Kushner [25], who utilized Wiener processes for
unconstrained one-dimensional optimization tasks and maximizing the likelihood of improvement when choosing the subsequent
sample. Mockus [40] introduced an innovative acquisition function named Expected Improvement (El), which was subsequently
applied in additional research by Zilinskas [41]. Perttunen [42], Stuckman [43], and Elder [44] extended Kushner’s approach to
address optimization problems in higher-dimensional spaces. In recent decades, Bayesian optimization has seen significant
growth and has been effectively used to address a variety of real-world issues, such as materials design and discovery [45],
sensor networks [46], the financial sector [47], and experimental design [48]. Recently, it is increasingly more popular within
the field of machine learning, especially in reinforcement learning [49], neural architecture search [50], and hyperparameter
tuning [51].

1.1.1. Surrogate models
In BO, a surrogate model is a probabilistic approximation of the true objective function. Instead of querying the real function
directly at every iteration, BO builds and updates a surrogate model to predict outcomes, enabling the algorithm to decide where
to sample next based on knowledge. Regarding the issue of optimizing a black-box (objective) function that is costly to evaluate,
f = R% > R takes an input vector x € R* (with d dimensions) and outputs a scalar value f(x) € R. Suppose the collected data
with n observations is D = {(x;, y;)}i=,, where each output y; is a disruptive analysis of the actual function:
Yi = f(xi) + €, ENN(O'O-Z)
Here, € represents Gaussian noise with zero mean and variance o2, which models measurement uncertainty or randomness.
. Gaussian Process (GP): A GP [52] is not parametric, and commonly used Bayesian approach to regression. It
establishes a prior over functions, and after data observation, it produces a posterior that represents an updated belief about the
function. Assume a Gaussian Process prior over the function f(x):
f)~GP(u(x), k(x,x")
Which means that any limited collection of function values [f (x,), f (x3), - ... , f (x,,)] follows a normal multivariate distribution
with a mean function, u(x) = 0 for ease of use and the covariance function, k(x, x") calculates how similar two inputs are x and
x'. For the given set of prior observations D, the Gaussian posterior distribution of the function value at a new location x, is given
by:
fx) D, x, ~ N(u.(x.),0%.(x.))
where the posterior mean u, (x,) and variance a2, (x,) are analytically derived using the kernel function. The mean is determined
as . (x,) = k(x, X)T[K(X,X) + 211"ty while the variance is o2,(x,) = k(x,,x,) — k(x,, X)T[K(X,X) + 02117 k(x,, X).
Here, X = [xq, x5, ... .. ,%,]T denotes the matrix of training inputs and y = [y, y3, ... ... ,v.]T the vector of corresponding outputs.
The kernel matrix K(X,X) € R™ "™ captures pairwise covariances between training points using a predefined kernel function
k(.,.) and k(x,,X) € R™ is the covariance vector among the new input x, and all training inputs. The term o2 accounts for the
observation noise and ensures numerical stability during matrix inversion.
. Bayesian Neural Network (BNN): A (BNN) [53] is a neural network framework that applies Bayesian principles to
capture uncertainty in its parameters. It extends conventional neural networks through the introduction of a probabilistic
framework with respect to the network’s weights and biases of the network. Instead of learning fixed point estimates of the
parameters, BNNs learn distributions, typically overlaying the network weights w with a prior p(w). For dataset D =
{(x;, ¥}, the objective is to determine the posterior distribution p(w | D) which measures the model parameters' degree of
uncertainty. However, due to the intractability of the exact posterior, approximate inference methods like variational inference or
Markov Chain Monte Carlo (MCMC) [54] are employed. In variational inference [55, 56], for instance, a simpler distribution
q(w) is optimized to minimize the Kullback—Leibler divergence to approximate the true posterior, KL(q(w)||p(w|D). Once the
approximate posterior is learned, predictions at a new input x, are made by marginalizing over the weight distributions, yielding
p.lx., D) = [ p(y. | x,, w)q(w)dw. This integral is typically approximated using Monte Carlo sampling [57], by averaging
outputs over multiple of the network's stochastic forward passes. Mathematically, the predictive mean and variance might be
estimated as:

T T
1 1
pa(x.) = TZ f(xsw®), ¢2,(x.)=~ ;Z Flsw®)2 =, (x,)?
t=1 t=1

where w® ~ g(w) are sampled weights from the learned posterior.

. Bayesian Convolutional Neural Network (Bayesian CNN): In contrast to standard BNNs, which require explicit
variational distributions and complex inference methods like MCMC, Bayesian CNNs leverage dropout as an implicit Bernoulli
variational distribution and utilize efficient Monte Carlo sampling via stochastic forward passes for posterior estimation, making
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them highly practical for large-scale deep learning tasks [57]. This allows scalable uncertainty estimation and effective surrogate
modeling for high-dimensional hyperparameter spaces, especially in convolutional architectures where full BNN inference is
computationally impractical. Thus, the approximate posterior g(8) is implicitly a distribution induced by dropout masks:

q(6) = H P (1 —p)tH

i
Where, z; € {0,1} is a random dropout mask and p; is the dropout probability for the i*"* neuron. Mathematically, the predictive
mean ., (x,) and predictive variance o2, (x,) are computed over T stochastic forward passes, following the expressions:

T T
1 1
u*(x*) ~ TZfBCNN(x*; W(t))' 0'2*(96*) ~ TZ fBCNN(x*; W(t))z - :u*(x*)z
t=1 t=1

Here, w® represents weights randon;ly masked through dropout in convolutional and dense layers, and input x, is typically a
2D or 3D spatial structure (image, not flattened vector).

1.1.2. Acquisition Functions

BO starts by collecting an initial set of samples from the unknown objective function. Based on these samples, a GP model is

constructed to estimate the function. An acquisition function for every iteration is computed using the GP and utilized to choose

the next most promising point for sampling. After evaluating the actual objective function at this point, the latest observation is

included in the training dataset in order to update the model. Until a termination condition is met, this cycle is repeated. Essential

utility functions are acquisition functions in guiding the search process toward the optimum of the objective function in BO.

They help ascertain the next point to sample by balancing exploration and exploitation. This means selecting points not only

from areas that are expected to give good results but also from regions that are still uncertain or less explored. Below, we briefly

review some of the frequently employed acquisition functions.

. Probability of Improvement (P1): P1[25] isa common acquisition function in BO, particularly valued for its simplicity
and intuitive approach. In mathematical terms, the PI function calculates the probability that the value of the unknown objective
function at a novel location x, will exceed the best function value observed so far, denoted as f(x*), by at least a small positive
threshold &. This threshold allows the optimization process to maintain a degree of exploration. The formula for Pl is expressed

as:
x) = f(xT) -
Pl = o (PO FOXD —¢
o(x.)
where u(x,) and o(x,) symbolize the predicted mean and standard deviation of the function value at point x, as estimated
by the surrogate model, and @ is the standard normal distribution's cumulative distribution function (or CDF), which is equal to

= I, exp(=t/2)dt.
. Expected Improvement (EI): EI [40] extends the notion of surpassing the best observed value by considering both the
probability and the anticipated magnitude of improvement, making it more informative and effective in complex, uncertain search
spaces. It calculates as the expected value of improvement over f(x™), by:
El(x) = (u(x) = f(x*) =€) ®(2) + 0 (x.) - 6(2)
Where Z = (M) @ and ¢ are the Gaussian cumulative distribution function (CDF) and probability density

o(x.)

function (PDF), respectively. El, originally introduced in 1975 [40] and later popularized by Jones et al. [58], has been extensively
studied and applied across diverse optimization scenarios. These include parallel, high-dimensional, noisy, constrained, multi-
objective, and multi-fidelity optimization problems.

. Knowledge Gradient (KG): Pl is the simpler acquisition function, which only considers the likelihood of improving
over the current best, or El, which incorporates the magnitude of that improvement. KG [59] goes further by estimating how
much the new observation at a given point will enhance the overall decision-making quality. KG is mathematically intended to
choose the subsequent query point x, by maximizing the expected increase in the maximum posterior mean of the objective
function following the observation of its value at x,. Let u(x) denote the current posterior mean of the surrogate model, and let
ut(x) represent the updated posterior mean after including the observation at x,. The KG at the point x, is then defined as:

KG(x,) = E[max u*(x)] — max u(x)

. Upper Confidence Bound (UCB): The confidence bound approach, known as Upper Confidence Bound (UCB) for
tasks involving maximization and Lower Confidence Bound (LCB) for tasks involving minimization, is formulated to minimize
regret in the context of multi-armed bandit problems. It does so by strategically combining the predicted reward with the
associated uncertainty, effectively balancing exploration and exploitation during the search process [60]. Mathematically, UCB
is described as:
UCB(x.) = p(x.) + B -a(x.)

where 8 > 0 is a metric to manage the trade-off between exploitation and exploration.
. Entropy Search (ES): ES [61, 62] chooses the subsequent assessment point by seeking to maximize the expected
decrease in uncertainty where the global optimum is located. Mathematically, the next point x, is chosen by maximizing the
expected decrease in the distribution's entropy over the minimum's location. This is expressed as:

ES(x,) = argmax Ey(x)[ H [p(xmin | D)] = H [ p(Xmin | D U {(x, y(x))}]]
H[-] denotes entropy, p(x.ir | D) is the current posterior distribution of the minimum location given the observed data D, and
y(x) represents a possible observation at the point x. The expectation is taken over the predictive distribution of the surrogate
model. In essence, Entropy Search evaluates each candidate point based on how informative it is expected to be in reducing
uncertainty about the global optimum, rather than just focusing on improvement or confidence bounds.
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1.2. Related Work

The development of effective Bayesian Optimization methods for complex, high-dimensional, and hybrid hyperparameter spaces
requires a thorough understanding of existing approaches. This section reviews prior work on standard BO, alternative surrogate
models, acquisition function innovations, high-dimensional optimization strategies, and hyperparameter tuning for deep learning
models, particularly CNNs.

1.2.1. Standard Bayesian Optimization

BO [63] is a well-known strategy for the worldwide optimization of expensive, noisy black-box functions. The literature on GP
optimization is extensive. In GP optimization, several heuristics for balancing exploration and exploitation have been put forth.
Recent advancements have significantly enhanced Bayesian optimization by improving surrogate modeling techniques,
acquisition functions, and scalability. GP-UCB was proposed in [60], which optimizes unknown, noisy functions using Gaussian
Processes and achieves sublinear regret bounds by leveraging the concept of maximal information gain, but de Freitas et al in
[64] showed sublinear regret for GP bandits with noisy observations, and analyzed the deterministic case and proved a
significantly faster exponential convergence rate under certain regularity conditions. El algorithms in efficient global optimization
converge to the minimum of functions in the replicating-kernel Hilbert space defined by a fixed GP prior, with proven
convergence rates [65]. A novel surrogate-based collaborative tuning (SCoT) method that leverages knowledge from prior
experiments to enhance hyperparameter optimization across multiple learning problems, outperforming traditional single-task
tuning approaches by Bardenet et al. [66]. Mahendran et al. [67] present a randomized Bayesian optimization strategy for adaptive
MCMC that efficiently tunes proposal parameters for sampling from complex probabilistic graphical models with minimal
objective function evaluations. Because of GP’s adaptability, precisely calibrated uncertainty, and analytical qualities, they are
typically utilized to build the distribution over functions used in BO [68, 69].

1.2.2. Alternative Surrogate Models

BO traditionally uses GPs to model expensive black-box functions due to their accurate uncertainty estimation, but the number
of observations causes GPs to scale cubically, limiting their use in large-scale settings. To address this, Snoek et al. [54] in 2015
proposed using neural networks for adaptive basis function regression as a surrogate model, achieving linear scalability and
enabling massively parallel hyperparameter optimization for deep learning tasks. Springenberg et al. [70] introduce a scalable
Bayesian optimization approach using flexible neural network surrogates combined with stochastic gradient Hamiltonian Monte
Carlo, enabling efficient optimization across high-dimensional, multi-task, and deep learning settings. To address the scalability
limitations of GP, study [71] proposes Neural Process for Bayesian Optimization (NPBO), which outperforms or matches
benchmark methods across power system and standard optimization tasks. Kerleguer et al. [72] suggest GPBNN, a hybrid
surrogate model combining GP and BNN for hierarchical multi-fidelity modeling, effectively capturing predictive uncertainty
across fidelity levels. Other surrogate models for Bayesian optimization, like random forests [73] and tree-structured Parzen
estimators [74, 75], have been the subject of some earlier research. A novel Bayesian Neural Network architecture and algorithm
that reduces storage complexity and robustly handles predictive uncertainty, avoiding local optima in non-convex settings, was
introduced in [76].

1.2.3. Optimization in High-Dimensional and Hybrid Spaces

Optimization of high-dimensional (dimensionality of the search area is calculated by multiplying the number of possible choices
for each hyperparameter) and hybrid (combination of discrete and continuous inputs) search spaces is highly challenging and
frequently observed in a few applications. Munteanu et al. [37] introduce a Hashing-enhanced Subspace BO (HeSBO) method
for high-dimensional BO utilizing subspace embeddings with low dimensions, showing tight GP error bounds and significantly
improved performance over previous projection-based approaches. Wang et al. [38] recommended Ensemble Bayesian
Optimization (EBO), a scalable framework that handles high-dimensional inputs, large observation budgets, and batch query
selection using randomized partitions and a novel TileGP model, enabling efficient BO with tens of thousands of findings. Liu et
al. [77] present a comprehensive review of scalable GPs, categorizing global and local approximation techniques to address GP’s
cubic complexity and enhance scalability for big data. Bayesian optimization using GP over sparse axis-aligned subspaces
(SAASBO) as proposed in [78] enables efficient high-dimensional black box optimization by leveraging Hamiltonian Monte
Carlo to identify relevant subspaces without problem-specific tuning. Bayesian Optimization has gained popularity for optimizing
expensive functions with many parameters [79]. To address scalability issues in high-dimensional settings, various structural
assumptions such as low-dimensional embeddings, additive decomposition, and variable selection have been proposed, often
requiring tailored acquisition strategies.

1.2.4. Hyperparameter Optimization of CNNs in Medical Imaging

The comparative study in Table 1 reveals several important limitations in the existing literature. Firstly, none of the selected
papers provide a detailed explanation of the surrogate models and acquisition functions utilized in their BO frameworks, which
of CNN hyperparameters, leaving unclear the range and structure of the parameters being optimized. Although [83, 84, 86, 87,
90, 91, 93 - 97] define the search space, they all rely on the default settings of BO using the GP as the surrogate model and El as
the acquisition function. Furthermore, none of these studies addresses the complexity introduced by the high-dimensional and
hybrid search space of CNN hyperparameters, which often includes a mix of continuous, categorical, and conditional parameters.
Effective optimization in such spaces requires careful adaptation or replacement of both the surrogate model and acquisition
function, which remains an unexplored direction in these works.
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Table 1 A Comparative study of Bayesian Optimization Approaches for CNN Hyperparameter Tuning Across Medical

Imaging Domains.

Refe  Domain Surrog Acquis Hyperparameters Key Findings Research Gaps
renc ate ition Tuned
es Model  Functi
(Yea on
r)
[80] Alzheimer’ Not Not KNN: Number of AlexNet’s fully - Used full deep feature
(202 s Disease explicit specifi  neighbors connected deep features vectors, leading to high
4) Detection ly ed MSVM: Kernel type, gave best performance;  dimensionality
and stated C, gamma KNN achieved 98.45% - No feature selection
Classificati DT: Max depth, min accuracy on the Kaggle was applied
on using samples split Alzheimer’s dataset; - No surrogate or
ML with MSVM was best on the  acquisition function
CNN ADNI dataset. BO details
Features efficiently optimized
model performance by
searching for optimal
hyperparameters.
[81]] MRIBrain Gaussi Not Hyperparameters of Combining features of - Surrogate model and
(202 Tumor an specifi ML classifiers (SVM, shallow and deep acquisition function type
4) Detection Proces ed KNN, DT). not ResNet18 layers + BA-  not explicitly mentioned.
(Feature s(GP) (defaul specified. optimized SVM - Search space limited to
Extraction t achieved 99.11% ML classifier
+ ML Expect detection accuracy and  hyperparameters (SVM,
Classificati ed 97.31% classification KNN, DT), no tuning for
on) Impro accuracy. Enhanced CNN layers.
vement performance in - Hybrid and high-
(ED) sensitivity, specificity, dimensional search
F1, MCC, and Kappa. space unexplored.
[82] MRI Empiri  Entrop Kernel length scale Achieved 96.3% SSIM - Only one
(202 Subsampli  cal y- and < 0.003 NMSE with  hyperparameter tuned
3) ng and Gaussi  based only 12.5% k-space (length scale); does not
Reconstruc  an explor sampling; open-loop, explore high-dimensional
tion Proces ation generalized concentric ~ CNN hyperparameter
S (inferr ring subsampling paths  space.
ed) work efficiently even on - Uses a fixed GP from
pathological brains prior data
without retraining. -Acquisition function not
optimized for
exploration—exploitation
trade-off
[83]1 MRIBrain Gaussi Not Conv layer size: 5,7,9,  Achieved 98.01% - Default surrogate and
(202 Tumor an explicit 11; Kernel size: 3x3, accuracy/F1 on dataset  acquisition functions are
3) Detection Proces ly 5x5; Filters: 16-256 1 and 99.62% used.
s(GP) stated (step 16); Dropout rate: accuracy/F1 on larger -Key hyperparameters like
0.0-0.6 Optimizer: dataset 2 using BO- batch size, activation
Adam, SGD (Nesterov); optimized CNNs; function, and batch
Learning rate: 0.001, effective automated normalization were not
0.0001 design of depth/width included.
parameters for tumor
classification.
[84] CNN Gaussi  Not Activation function: Bayesian Optimization - Search space limited to
(202  hyperpara an specifi ~ ReLU, ELU, Sigmoid, significantly improved dense layers and
2) meter Proces ed SELU, Tanh; Batch size:  CNN validation optimizer, no tuning of
optimizatio s (GP) 1-128; Dropout rate: accuracy to 98.70% convolutional layers
n for brain 0.1-0.5; Number of without data (depth, width, filter size,
tumor dense nodes: 32-1024; augmentation, etc.).
classificatio Optimizer: Adam, outperforming - Surrogate model and
n using Nadam, AdaMax, pretrained models like  acquisition function
CE-MRI RMSProp, SGD VGG16 (97.08%), settings not customized

VGG19 (96.43%),
ResNet50 (89.29%),
InceptionV3 (92.86%),

for high-dimensional
and hybrid search.
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and DenseNet201
(94.81%).

[85] CNN-based Gaussi Not Not clearly specified The proposed method - No exploration of
(202 tumor an specifi achieved 97.37% search space for
1) classificatio Proces ed classification accuracy, architectural
n with s (GP outperforming previous hyperparameters (depth,
concatenat works (accuracy range  width, kernel size, etc.).
ed CNN 84.19%-96.13%) on the - Default surrogate and
same dataset. acquisition settings of
BO for complex CNN
concatenation
architectures.
[86] CNN Gaussi  Not Network depth, Combining ENAS with - No mention of
(202  architectur an specifi  learning rate, batch BO yields robust, acquisition function
4) esearch for Proces ed size, possibly dropout, efficient CNNs; types (e.g., UCB, EI, PI)
ultrasound s (GP and optimizer Optimizing both cell - Limited
image- configuration structure and trainable  hyperparameter
based hyperparameters diversity
breast improves performance, - Surrogate model
lesion achieving low error characteristics were not
classificatio rates on internal deeply analyzed
n (<20.6%) and external
(avg. 17.3%) datasets
[87] Classificati  Gaussi  Not Learning rate, Optimized CNN - Not explicitly mentioned
(202  onand an specifi  regularization factor, outperforms state-of- the surrogate and
3) segmentati  Proces ed momentum, section the-art and shallow acquisition functions of
on of S depth, number of CNNs by >3% and BO.
breast convolution filters >5% respectively; - Lack of standardized
tumors in Outperforms U-Net benchmarks for BO in
ultrasound and FCN in CNN hyperparameter
(USs) segmentation metrics tuning
images (SSIM: 0.98 vs
using CNN 0.93/0.92, MSE: 0.01 vs
0.21/0.28)
[88] Breast Bayesi  Not Not specified (focus is Bayesian—-CNN - BO not used for
(202  histopathol an specifi ~ on architecture and improved accuracy by hyperparameter
1) ogical CNN ed uncertainty 1.2% over TL-CNN; optimization
image quantification) Reduced false negatives - Not explicitly
classificatio by 11% and false mentioned the
n positives by 7.7%; acquisition functions
Further improved by - No exploration of high-
modified Bayesian— dimensional or
CNN with stochastic hierarchical search
adaptive activation; 6% spaces
accuracy boost on 77%
of test data using
uncertainty
thresholding
[89] Diabetic Not Not CNN architecture and BO significantly - Surrogate model and
(202  Maculopat  explicit specifi  hyperparameters improved CNN acquisition functions are
2) hy ly ed performance for both not explicitly stated
detection in  stated fundus and OCT - Unspecified
OCT and images; Proposed hyperparameters, which
fundus CNNs outperformed ones exactly
images several pre-trained - BO applied in a basic

models (AlexNet,
VGG16/19, GoogleNet,
ResNet-50); Statistical
tests (ANOVA, ROC,
histograms) validated
results

form without integration
of uncertainty modeling
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[90] Retinal Not Not Optimizer: Adam, DenseNet201 achieved - Surrogate model and
(202  Disease explicit specifi  RMSProp, SGD, >99% accuracy; acquisition function not
2) Detection ly ed AdaDelta; Learning Transfer learning with  explicitly explored
using OCT  mentio rate: 1e-3, 1e—4, 1e-5, Bayesian optimization - Trade-off between
ned 1le—6; Activation significantly improved hyperparameter tuning
functions: ReLU, ELU, performance; Image and training time not
Tanh, Leaky RelLU; augmentation helped fully addressed
Neurons in custom increase generalization
layers: 64, 128, 256,
512, 1024 Batch size:
32, 64, 128
[91]  Tuberculos Not Not Kernel Size: [3 to 11]; Shallow-CNN achieved - Surrogate model and
(202  is Detection explicit specifi  Number of Filters: [16 ~ peak accuracy and F1-  acquisition functions not
2) from Chest ly ed to 128]; Kernel Stride:  score of 0.95, specified
X-rays stated [1 to 5]; Pooling outperforming - Trade-off between
Method: [Max, modified DenseNet hyperparameter tuning
Average, GlobalMax]; (0.91); AUC of 0.976 and training time not
Dense Layer Units: with ROC; Shallow- fully addressed
[128 - 1024]; Learning CNN is simpler, more
Rate: [0.1 to 0.001]; interpretable, and
Optimizer: [Adam, robust to noise
AdaGrad, AdaDelta, compared to DenseNet;
SGD] CAM and LIME
confirmed lower lung
regions as key for TB
detection
[92] COVID-19 Not El SVM kernel function: Hybrid CNN + SVM - Surrogate model not
(202  and Lung explicit [Gaussian, Linear, kernel with Bayesian disclosed
4) Disease ly Polynomial]; Box Optimization achieved - CNN hyperparameter
Diagnosis stated Constraint, Kernel 98.7% accuracy, tuning details are sparse
from Chest Size, Standardization, 97.89% sensitivity,
X-rays Polynomial Order 98.2% precision, and
97.89% F1-score; SVM
(Gaussian kernel)
outperformed other
kernel function; Five-
class classification
including COVID-19,
Pneumonia
(bacterial/viral),
Normal, and TB was
successfully performed
[93] Tuberculos Not Not Number of hidden Features extracted - Surrogate model and
(202 s explicit specifi  layers: 1-10; Number from VGG16, acquisition functions not
3) Diagnosis ly ed of nodes per layer: 5- EfficientNetBO, disclosed
from Chest  stated 512; Learning rate: ResNet101, and - No exploration of high-
X-rays 0.000001 to 0.1 DenseNet201; dimensional or
Activation functions: EfficientNetBO + DNN hierarchical search
ReL.U, Sigmoid, Tanh, (optimized with spaces
Linear Optimizers: Bayesian method)
SGD, Adam, Adadelta, achieved 99.29%
Adagrad, RMSprop accuracy
[94] COVID-19 Not Not Batch Size (5 to 100); Proposed MKCovid-19 - Surrogate model and
(202  Detection explicit specifi ~ Momentum (0.01 to workflow uses transfer  acquisition functions not
1) from Chest Iy ed 0.1); Learning Rate (log learning + Bayesian described
X-rays stated scale between 0.01 and  Optimization to fine- - Limited
0.02); Optimizer (SGD, tune models; Accuracy  hyperparameter
Adam, RMSprop, of 98% on test data diversity
Adagrad, Adadelta, achieved
Adamax); Pre-trained
CNNs (ResNet18,
ResNet50, GoogleNet,
VGG16, SqueezeNet,
DenseNet)
[95] COVID-19 GP El Number of Dense Introduced - A limited number of
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(202  Detection Layers; Number of COVIDXception-Net, hyperparameters were
2) from Chest Dense Nodes; Learning  an enhanced Xception-  optimized
X-rays Rate; Activation based CNN tuned using - Search space was not
Function Bayesian Optimization;  well-defined or extensive
Achieved Accuracy: - Hyperparameter
94%, Precision: 95%, ranges were not
Recall: 94%, described, limiting
Specificity: 99.7%, F1-  reproducibility and
score: 94%, MCC: generalizability
0.992
[96] COVID-19 Not Not Initial Learning Rate Suggested a CNN - Surrogate model and
(202  Detection explicit specifi ~ [0.001 -1]; SGD model optimized with acquisition function not
2) from Chest ly ed Momentum [0.8 - 1]; Bayesian optimization described
X-rays stated Depth of Network [15];  for COVID-19, Normal, - Limited detail on
L2 Regularization [le-  and Pneumonia X-ray architectural
10-0.001] classification; Bayesian ~ components beyond
optimization depth
outperformed three - Lacked broader search
ablation scenarios with  over hyperparameter
96% accuracy types (e.g., activation,
batch size)
[97] COVID-19 Not Not Initial Learning Rate BO was used to - Surrogate model and
(202  Diagnosis explicit specifi  [le-2 —1]; Momentum optimize acquisition function
2) from Chest ly ed [0.8-0.98]; L2 hyperparameters for were not described
CT Scans stated Regularization [1e-10—  MobileNetV2 and - Hyperparameter

le-2]

ResNet-50; Achieved
99.37% accuracy,
99.36% recall, and
99.37% F1-score on
mixed international
datasets

search was limited to
only three optimizer
parameters

- No architectural tuning
of DNN models (e.g.,
layer configuration,
activation)

PROPOSED METHODOLOGY

The proposed methodology optimizes CNNs for MRI brain tumor detection and classification using an EBO framework, as
depicted in Fig. 1. A hybrid and high-dimensional search space of CNN hyperparameters, comprising categorical, discrete, and
continuous parameters, is defined, with the optimization objective being the maximization of validation accuracy. Two
benchmark MRI datasets are used for evaluation: dataset_1, containing 3,000 images for binary classification of tumors versus
non-tumors, and dataset_2, comprising 3,064 images for three-class classification of meningioma, glioma, and pituitary tumors.
In the initial stage, BO is applied to both datasets using surrogate models such as GP, RF, BNN, and Bayesian CNN, each tested
with acquisition functions including EIl, ES, PI, UCB, and KG over 30 trials. The outputs, consisting of optimized
hyperparameters, validation accuracy, and corresponding mean and standard deviation, are analyzed to determine the best
surrogate model and the two most effective acquisition functions, forming the foundation of the proposed EBO. This enhanced
approach combines the identified surrogate model with hybrid acquisition functions to address the challenges of optimizing
hybrid and high-dimensional hyperparameters. The EBO is then executed on both datasets for 30 trials, with results measured
in terms of best validation accuracy, mean, and standard deviation, and compared against baseline BO to validate performance
gains. Subsequently, CNN architectures are constructed using the optimized hyperparameters and evaluated on both datasets
using accuracy, recall, precision, F1-score, and specificity as performance metrics. Finally, the optimized CNN models are
compared with existing state-of-the-art methods, demonstrating that the proposed EBO framework achieves superior
performance and offers a robust strategy for MRI brain tumor detection and classification.
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Search Space & objective Function

Hybrid & High-dimensional Hyperparameters of CNN with Single Objective Function:
x" = argmax ey AcCyq (X)

| |

Run-Bayesian Optimization:

Dataset_2: MRI
Brain Tumor
classification (3064)
MEN vs Glioma vs
PT

Dataset_1: MRI Run-Bayesian Optimization:
Bram Tumor
Detection (3000)
Tumorous vs Non-
tumorous

Run Surrogate Models (GP. RF, BNN & BCNN)
with each Afs (EL ES, PL. UCB & KG) for 30 trials

Run Surrogate Models (GP, RF, BNN & BCNN)
with each Afs (EL ES. PL. UCB & KG) for 30 trials

|

l

Output_1:

Optimized Hyperparameters, Val_Acc, Mean,
Standard Deviation of each Surrogate Model with
each AF.

Output_2:

Optimized Hyperparameters, Val_Ace, Mean,
Standard Deviation of each Surrogate Model with
each AF.

l |

Results Analysis:

1. Select the Best Surrogate Model
2. Select two Best Acquisition Functions by Analysis Results of Best Surrogate Model.

l

Propose (Best Surrogate Model with Hybrid AFs)
Method for Hybrid & High-dimensional
Hyperparameters of CNN

|

Run Proposed or Enhanced Bayesian Optimization (EBO) using Dataset D1 and D2 for
30 trials

1. Best Val_Acc with best optimized hyperparameters of D1 & D2
2. Mean and Standard Deviation

I
'

Results Analysis:

Comparison of EBO with Baseline BO Method i.e. Output_1 and Output_2

l

Construct and Evaluate Optimized CNNs for D1 & D2:

1. Using Optimized Hyperparameters of D1 & D2
2. Evaluate Accuracy, Recall, Precision, F1_score and Specificity

|

Comparison Analysis of Optimized CNNs for D1 & D2 with Existing Methods

Fig. 1. Workflow of the Proposed Methodology of Enhanced Bayesian Optimization Method (EBO).

1.3. Dataset Description

This study employs the publicly available datasets on Kaggle. The first dataset (dataset_1) [98] "Brain Tumor Detection™ was
made available by Ahmed Hamada on Kaggle. The dataset_1 consists of a total of 3,000 MRI images, evenly distributed across
two binary classes: 1,500 images labeled "Yes" (demonstrating the existence of a tumor) and 1,500 images labeled "No"
(demonstrating the absence of a tumor). The second dataset (dataset_2) [99] “Brain Tumor Image Dataset” consists of 3064 T1-
weighted contrast-enhanced images from 233 patients with three kinds of brain tumor: meningioma (708 slices), glioma (1426
slices), and pituitary tumor (930 slices). These files were converted by “Deniz Kavi” from the “mat” file format to the ".png"
format. Every image is resized and normalized to a standard dimension of 224 x 224 x 3, consistent with the input requirements
of deep CNNs and common practices in medical imaging studies. The normalization ensures consistency in feature representation
and computational efficiency during training. Following established conventions in the literature for dataset partitioning [100,
101], the dataset is separated at random into 80% training, 10% validation, and 10% testing subsets, ensuring class balance in
each split. This stratified division supports reliable model evaluation and mitigates the risk of data leakage or overfitting. The
dataset offers sufficient variability in tumor size, location, and intensity, making it suitable for training deep learning models
aimed at brain tumor detection in real-world clinical environments.

1.4. Objective Function
The principal objective of the proposed BO algorithm is to identify the ideal hyperparameter configuration x* € X that optimizes
the performance of a CNN on a given validation dataset. Specifically, the goal is to maximize the validation accuracy y =
Acc,q;(x) obtained after training the CNN using a candidate configuration x. Formally, the objective function can be expressed
as:

X" = argmaxyey AcCyq;(X)
In which, X denotes the hyperparameter search space, Acc,q;(x) is the validation accuracy obtained using the configuration x,
and x* is the hyperparameter configuration yielding the highest validation accuracy.
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1.5. Search Space

The hyperparameter search space designed for optimizing the CNN is high-dimensional, hybrid, and with a hierarchical structure.
Table 2 provides an overview of the hyperparameters considered, their possible values, categories, data types, parameter types,
and their roles within the overall architecture. The space includes ten key hyperparameters spanning architectural design (e.g.,
number of convolutional blocks, filters, filter sizes), regularization methods (e.g., dropout rate, batch normalization), activation
functions, optimization strategies (e.g., learning rate, optimizer), and training configurations (e.g., batch size).

Each convolutional block is treated as a structural unit and is composed of a combination of filters, filter sizes, dropout layers,
activation functions, pooling types, and optionally batch normalization. This hierarchical organization adds a layer of conditional
dependency among hyperparameters, where multiple parameters jointly define the structure and function of a single
convolutional block. This characteristic introduces a nested search structure, which is a typical hallmark of hierarchical spaces,
where the effectiveness of one hyperparameter (e.g., activation function) is contextually dependent on the values of others (e.g.,
filter size or pooling type).

Furthermore, the search space is hybrid in nature, comprising categorical (e.g., activation functions, optimizers), discrete (e.g.,
number of convolutional blocks, filters, batch sizes), and continuous parameters (e.g., learning rate, dropout rate). Such diversity
in data types increases the complexity of the search and necessitates a robust optimization strategy. The combination of high
dimensionality, heterogeneity in parameter types, and hierarchical organization poses a non-trivial challenge for optimization,
reinforcing the suitability of BO using BCNN with a hybrid acquisition function as proposed in this study.

Table 2 Structured and Hybrid Search Space of CNN Hyperparameters for Optimization.

Hyperparameter Possible Values Hyperpara Data Type Parameter  Search Space
meter Type Role
Category
Number of Conv ~ [2, 3,4, 5] Architecture  Integer Discrete Top-level /
Blocks Structural
Filters per Block [32, 64, 128, 256] Architecture  Integer Discrete Nested in Conv
Blocks
Filter Size [(2,2), (3,3)] Architecture  Tuple (int, int) ~ Categorical ~ Nested in Conv
Blocks
Dropout Rate [0.2,0.3,0.4] Regularizati  Float Discrete Nested in Conv
on Blocks
Activation ["relu”, "leakyrelu", Architecture  String Categorical ~ Nested in Conv
Function "prelu”, "swish", Blocks
hard_swish.]
Pooling Type [*maxpooling”, Architecture  String Categorical ~ Nested in Conv
"average_pooling"] Blocks
Batch ["yes", "no"] Regularizati ~ String Categorical ~ Nested in Conv
Normalization on (Boolean) Blocks
Learning Rate [1e-3, 1e-2] Optimizatio  Float Continuous  Global
n
Optimizer ["'SGD", "RMSprop”,  Optimizatio  String Categorical ~ Global
"Adam", "Adadelta" n
"Nadam"]
Batch Size [8, 16, 32] Training Integer Discrete Global

1.6. Enhanced BO Algorithm

To address the challenges of achieving optimal hyperparameter tuning in CNNs, particularly for brain tumor classification tasks,
we propose an Enhanced BO framework. This enhancement integrates a powerful surrogate model with a hybrid acquisition
strategy to better navigate the trade-off between exploration and exploitation. The objective is to improve the quality of suggested
hyperparameter configurations by leveraging both uncertainty quantification and expected performance gains in a more balanced
manner.

To successfully balance the exploration versus exploitation trade-off during hyperparameter optimization, we introduce hybrid
acquisition functions that combine ES and KG. This formulation is specifically designed to complement the strengths of the best
surrogate model. ES chooses the point that maximally reduces the uncertainty (entropy) regarding the position of the global
optimum. It chooses the point x that maximally reduces the uncertainty about where the minimum lies, not necessarily where the
minimum value is expected to be (sec. 2.1.2). Hence, ES is designed to explore uncertain regions. Where KG chooses the point
x where the expected improvement in the maximum utility (e.g., accuracy) after sampling is the highest (sec. 2.1.2). It evaluates
how much better we expect the best predicted value to be after sampling at x. Thus, KG is designed to exploit promising areas of
the search space. Motivated by this observation, we combine both in a weighted formulation:
(ES+KG)x=(1—-L1)-KG(x)+ A -ES(x)

Where 1 € [0,1] dynamically controls the trade-off. To implement this dynamic balance, we utilize a two-phase search schedule.
During the first half of the trials, we set A = 1 for full exploration (ES), and in the second half, 4 = 0 for full exploitation (KG).
The hybrid score at each trial is computed and used to guide the selection of new hyperparameters. Hence, the combination of
ES and KG enables a principled and effective trade-off between global search and local refinement, especially suitable for high-
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dimensional CNN hyperparameter spaces. Algorithm 1shows the implementation of the proposed EBO.

Algorithm 1: Proposed EBO

Input:

CNN training dataset D¢,qin, Dyari: D = {(x;, ¥ 1,
Search space of hyperparameters: X;
Surrogate model: Best Model (in sec 4.1);
Acquisition function: Hybrid of ES and KG;
Acquisition parameters: A4, €;

Number of trials: N;

MC Samples: T;

Output:

Optimal hyperparameter configuration x*
Validation accuracy y*

1. Initialize trial countt = 0

2. Initialize dataset D = @

3. For each trial i= 1 to N: do

4, Sample a candidate hyperparameter configuration x; € X
5. Train the surrogate model on training data using x;
6. Foreach t=1toT:

7. Forward pass: compute f(x,; w®)

8. End for

9. Estimate predictive mean and uncertainty:

10. p(x) = T30 f (x5 W),

11. 02 (x) = 720 f (x5 wO)? — p(x))?

12. Set A dynamically:

13. Ifi< g: A = 1.0 (exploration phase)

14. Else: 1 = 0.0 (exploitation phase)

15. End if

16. Compute acquisition score:

17. ES: ES(x;) = —log(a(x;)+€)

18. KG: KG(x;) = u(x) +y-o(x;)

19. Hybrid:

20. (ES+KG)x=(1-21)-KG(x)+ A+ ES(x)

21. Evaluate the model using x;, get validation accuracy
22. End For

23. Return x* and y*

RESULTS AND DISCUSSIONS

1.7. Performance Analysis of Novel BCNN Surrogate Model with Acquisition Functions

To identify the most effective surrogate model and the two best acquisition functions with the best surrogate model, for CNN
hyperparameter optimization, we evaluated four surrogate models: GP, RF, BNN, and BCNN, in combination with five
commonly used acquisition functions: El, P, ES, KG, and UCB. Each surrogate and acquisition function combination was run
for 30 optimization trials to maximize the validation accuracy of CNN models. All experiments were implemented using Python
on Google Colab with GPU support. The evaluation was carried out on two datasets: dataset_1, a binary classification dataset
for tumor detection (tumor versus no tumor), and dataset_2, a multi-class dataset for tumor classification (glioma, meningioma,
pituitary). This comprehensive setup enabled a fair comparison across different configurations, allowing us to determine the
surrogate model that consistently yields high-performing CNN architectures for both classification tasks.

1.7.1. Selection of Optimal Surrogate Model

On dataset_1, the performance of surrogate models varies across acquisition functions shown in Fig. 2. The GP performs strongly
under El and UCB, reaching close to 0.8 accuracy early, but its performance stabilizes at a lower level compared to BCNN in
later trials. RF shows steady yet limited improvement, generally stabilizing around 0.72 - 0.75 across acquisitions, with slightly
better outcomes under KG and PI. The BNN performs moderately well, achieving accuracies between 0.75 and 0.78 with El,
ES, and UCB, though it remains less consistent and weaker than BCNN. In contrast, the Bayesian CNN (BCNN) outperforms
all other surrogates, achieving ~0.81 with EI, ~0.82 with UCB and ES, and peaking at ~0.85 with KG, which demonstrates its
superiority in balancing exploration and exploitation.

Table 3 also shows the comparative performance of different surrogate models with various acquisition functions using dataset_1
and computes the validation accuracy, mean, and standard deviation. Across all surrogate models, the BCNN consistently
demonstrated superior performance in terms of both mean validation accuracy and overall reliability. Specifically, BCNN paired
with ES and KG achieved the highest validation accuracy of 0.8750, with corresponding mean accuracies of 0.5940 and 0.5723,
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respectively. These results highlight the strong capability of BCNN in modeling the complex, high-dimensional search space of
CNN hyperparameters, benefiting particularly from acquisition strategies that balance exploration and exploitation.

Surrogate Models Comparison (with El Acquisition) Surrogate Models Comparison (with UCB Acquisition)
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Fig. 2. Performance of Surrogate Models (GP, RF, BNN, BCNN) with Acquisition Functions (El, PI, ES, KG, UCB) in
CNN Hyperparameter Optimization using binary dataset_1

Table 3 Performance Comparison of Surrogate Models with various Acquisition Functions on Validation Accuracy,
Mean, and Standard Deviation for Dataset 1

GP RF BNN BCNN
Val Mean  Std. Val Mean  Std. Val Mean  Std. Val Mean  Std.
Acc. Acc. Acc. Acc.
El 0.7875 0542 0.100 0.7750 0.580 0.101 0.8000 0.543 0.092 0.8125 0.567 0.120

ES 0.8500 0.554 0.118 0.7188 0.550 0.088 0.8000 0.559 0.106 0.8750 0.594 0.116

UCB 0.7250 0.547 0.084 0.7625 0.582 0.092 0.8250 0.558 0.112 0.8250 0.568 0.099

KG 0.7875 0.555 0.800 0.8000 0.569 0.10 0.8125 0.542 0.110 0.875 0.572  0.109

PI 0.7875 0567 0.762 0.7625 0.529 0.88 0.7750 0,562 0.107 0.7875 0519 0.089
The comparative results of surrogate models on dataset_2 across different acquisition functions are illustrated in Fig.3. Each plot
represents the progression of the best validation accuracy achieved so far as the number of trials increases. Among the surrogate
models, the BCNN consistently outperforms GP, RF, and BNN. Under the El acquisition, GP and RF show gradual improvement
but plateau around 0.6 - 0.7, while BNN achieves close to 0.75. In contrast, BCNN quickly surpasses 0.8 and stabilizes,
highlighting its superior learning efficiency. A similar trend is observed with the UCB, where BCNN achieves the highest
accuracy (~0.86), while the other surrogates remain below 0.72. When the ES acquisition is used, GP progresses slowly and
stabilizes below 0.7, RF performs better, reaching around 0.75, and BNN achieves 0.75. BCNN, however, stands out by reaching
nearly 0.88, demonstrating its robustness. The KG function shows competitive performance by RF (~0.77) and BNN (~0.75),
but again BCNN dominates with an accuracy close to 0.88. With the PI, GP shows limited improvement (below 0.65), RF reaches
~0.7, BNN stabilizes around 0.67, while BCNN once again leads with ~0.81. Across all acquisition functions, BCNN consistently
shows faster convergence and higher accuracy, indicating its effectiveness as a surrogate model for hyperparameter optimization
on dataset_2.

The tabulated results in Table 4 further reinforce the observations from the graphs. BCNN records the highest validation
accuracies across all acquisition functions, with values of 0.8098 for El, 0.8721 for ES, 0.8623 for UCB, 0.8787 for KG, and
0.8098 for PI. This indicates that BCNN not only converges faster but also maintains superior predictive accuracy. BNN performs
moderately, achieving up to 0.75, though with higher variability in standard deviation. RF demonstrates competitive results
under the KG acquisition (0.7749) but still lags behind BCNN. GP, on the other hand, shows the weakest performance overall,
failing to exceed 0.71 even with UCB. Importantly, BCNN also shows relatively lower standard deviations across acquisitions,
suggesting that its performance is both accurate and stable.
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Fig. 3. Performance of Surrogate Models (GP, RF, BNN, BCNN) with Acquisition Functions (El, PI, ES, KG, UCB) in
CNN Hyperparameter Optimization using binary dataset_2

Table 4 Performance Comparison of Surrogate Models with various Acquisition Functions on Validation Accuracy,
Mean, and Standard Deviation for dataset 2

GP RF BNN BCNN

Val Mean Std. Val Mean  Std. Val Mean  Std. Val Mean  Std.

Acc. Acc. Acc. Acc.
El 0.6750 0.348 0.113 0.625 0.386 0.108 0.75 0.442 0.147 0.8098 0.597 0.152
ES 0.6750 0.391 0.111 0.6625 0.402 0.142 0.75 0.449 0.149 0.8721 0.615 0.115
UCB 0.7124 0.440 0.129 0.6652 0.389 0.114 06062 0.412 0.110 0.8623 0.618 0.163
KG 0.6499 0.378 0.121 0.7749 0427 0.161 0.75 0.394 0.134 0.8787 0.633 0.148
Pl 0.6374 0.415 0.120 0.6999 0.405 0.126 0.6750 0.436 0.143 0.8098 0.624 0.147

Finding: The comparative analysis of surrogate models on both dataset-1 and dataset_2 indicates that the BCNN is the most
effective and reliable surrogate for CNN hyperparameter optimization. The GP, while demonstrating strong initial exploration
by achieving higher accuracy in the early stages, failed to maintain its performance during later trials, thereby limiting its overall
reliability. RF provided stable outcomes, but its improvements remained restricted, converging at comparatively lower accuracy
levels, which reduces its suitability for modeling the complexity of CNN hyperparameter spaces. The BNN offered moderate
performance and, in certain instances, showed competitive results, but its relatively high variability and lack of consistency
diminished its robustness across different scenarios. In contrast, BCNN consistently delivered superior validation accuracy
across acquisition strategies and datasets, exhibiting not only faster convergence but also lower variability, which highlights its
ability to capture intricate patterns within high-dimensional search spaces. These findings indicate that BCNN is more capable
of achieving accurate and stable performance compared to the other surrogates, thereby establishing it as the most reliable and
powerful surrogate model for guiding BO in CNN hyperparameter tuning.

1.7.2. Selection of acquisition functions with Optimal Surrogate model (BCNN)

The comparative analysis of acquisition functions for BO in tuning a BCNN demonstrates notable performance differences
across methods on dataset_1 (Fig. 4). Among the five acquisition functions evaluated, El, ES, UCB, KG, and PI, ES and KG
were found to be the most effective. Both functions achieved the maximum validation accuracy (0.8750), with ES exhibiting the
highest mean accuracy (0.594) and moderate variability (standard deviation = 0.116), indicating reliable and consistent
performance. KG followed closely, maintaining competitive stability with a standard deviation of 0.109. In contrast, El, despite
achieving a reasonable accuracy of 0.8125, demonstrated the highest variability (standard deviation = 0.120), suggesting less
predictable behavior across iterations. PI, although exhibiting the lowest variability (standard deviation = 0.089), recorded the
lowest validation accuracy (0.7875), reflecting a trade-off between stability and effectiveness. UCB achieved moderate
performance, striking a balance between accuracy and consistency but falling short compared to ES and KG. These findings
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highlight ES as the most robust acquisition strategy for BCNN-based hyperparameter optimization, attributable to its ability to
balance exploration and exploitation effectively. The superior performance of ES and KG may be explained by their capability
to incorporate uncertainty information in a principled manner, guiding the optimization process toward regions with higher
potential for improvement while maintaining consistency. Conversely, El and PI, being more myopic in nature, fail to leverage
uncertainty efficiently, leading to suboptimal and unstable performance. This suggests that advanced acquisition functions
prioritizing information gain, such as ES and KG, are more suitable for complex, high-dimensional optimization tasks like CNN
hyperparameter tuning.

The bar graph in Fig. 5 on dataset_2 illustrates the validation accuracy of a BCNN optimized using different acquisition functions
under the Bayesian Optimization framework. The acquisition functions compared include El, ES, UCB, KG, and PI. Each bar
represents the validation accuracy for a given acquisition function, while error bars indicate the standard deviation. Additionally,
the mean accuracy of each acquisition function is represented as connected points forming a trend line to show overall
performance consistency. From the analysis, the KG function demonstrated the highest validation accuracy of 0.8787, with a
mean accuracy of 0.633 and a standard deviation of 0.148, demonstrating strong and relatively stable performance. ES achieved
a validation accuracy of 0.8721, with a mean of 0.615 and the lowest standard deviation (0.115), signifying the most consistent
results among all methods. The UCB method obtained a validation accuracy of 0.8623 with a mean of 0.618; however, it
exhibited the highest variability (standard deviation of 0.163). In contrast, El and Pl achieved comparatively lower validation
accuracies (0.8098 each), with mean values of 0.597 (El) and 0.624 (PI) and standard deviations of 0.152 and 0.147, respectively.
These findings suggest that KG is the most effective acquisition function for BCNN-based hyperparameter optimization, while
ES offers the highest consistency. El and PI showed relatively weaker performance, indicating limited suitability for this specific
setup.

Findings: The analysis across dataset_1 and dataset_2 indicates that ES and KG are the best acquisition functions for balancing
exploration and exploitation in BCNN-based Bayesian Optimization. KG achieved the highest validation accuracy (0.8787 on
dataset_2 and 0.8750 on dataset_1) with strong mean accuracy, while ES showed slightly lower accuracy but the lowest
variability (std = 0.115), making it the most consistent method. Both functions effectively utilize uncertainty information,
enabling robust optimization compared to El, PI, and UCB, which showed lower stability or accuracy. Thus, KG is preferred for
maximum accuracy, while ES is ideal for consistent performance.

Performance of BCNN for Different Acquisition Functions on Dataset_1
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Fig. 4. Validation Accuracy with Error Bars and Mean Trend for BCNN-based Surrogate model with Acquisition
functions (El, ES, UCB, KG, and PI) on dataset_1.
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Performance of BCNN for Different Acquisition Functions on Dataset_2
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Fig. 5. Validation Accuracy with Error Bars and Mean Trend for BCNN-based Surrogate model with Acquisition
functions (El, ES, UCB, KG, and PI) on dataset_2.

1.8. Evaluation of Proposed EBO (BCNN_ES+KG)

Fig. 6 presents the optimization history of BCNN using various acquisition functions, including El, UCB, ES, KG, PI, and the
proposed hybrid ES+KG approach on dataset_1. Among the individual strategies, ES achieved the highest mean accuracy
(0.594), followed by KG (0.572), while PI recorded the lowest (0.519). EI and UCB demonstrated moderate performance with
mean accuracies of 0.566 and 0.568, respectively. In contrast, the proposed BCNN_ES+KG hybrid approach significantly
outperformed all others, achieving the highest mean accuracy (0.648) and demonstrating faster convergence and better stability
across trials. This superior performance can be attributed to the combined advantages of ES for exploration and KG for informed
exploitation, enabling more effective hyperparameter optimization for BCNN.

Fig. 7 presents the optimization history of the BCNN using six acquisition strategies: El, UCB, ES, KG, PI, and the proposed
ES+KG hybrid on dataset_2. Each subplot shows the progression of validation accuracy across 30 trials, with the blue line
representing objective values, the red dashed line indicating the best-so-far accuracy, and the green dashed line showing the
mean accuracy. Among the individual methods, KG achieved the highest mean accuracy (0.633), followed by P1 (0.624) and ES
(0.615), whereas EI recorded the lowest performance (0.597). The ES+KG hybrid approach demonstrated a clear advantage,
attaining the highest mean accuracy (0.746) with relatively stable convergence, outperforming all other strategies. This superior
performance can be attributed to the combined strengths of ES in promoting exploration and KG in leveraging knowledge-based
exploitation, leading to more efficient and robust hyperparameter optimization.
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Fig. 6. Comparison of optimization history of proposed BCNN_ES+KG method with BCNN and individual acquisition
functions (EIl, UCB, ES, PI, and KG) on dataset_1
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The comparative analysis, as depicted in Table 5, of acquisition functions for BCNN-based BO reveals a clear performance
advantage for the proposed hybrid ES+KG approach across both datasets. For dataset_1, the proposed method achieved the
highest validation accuracy (0.970) and mean value (0.834), with a low standard deviation (0.126), indicating both superior
predictive performance and consistency. Similarly, in Dataset D2, ES+KG recorded the best validation accuracy (0.9213) and
mean (0.700) while maintaining competitive stability (standard deviation 0.164). In contrast, individual acquisition functions
such as El, UCB, ES, KG, and Pl demonstrated moderate improvements, but none matched the overall effectiveness of the hybrid
strategy. These findings confirm that integrating ES with KG achieves an improved balanced trade-off between exploration and
exploitation, resulting in improved convergence and robustness for hyperparameter optimization in BCNN-based models.

Table 5 Comparative analysis of different acquisition functions (EIl, UCB, ES, KG, PI, and the proposed ES+KG) used
with a BCNN surrogate model for hyperparameter optimization across two datasets: dataset_1 and dataset_2.

Dataset_1 Dataset_2

Val Acc Mean Standard Val Mean Standard
Deviation Acc Deviation
BCNN_EI 0.8125 0.5665 0.1201 0.8098 0.597 0.152
BCNN_UCB 0.8250 0.5683 0.0999 0.8623 0.618 0.163
BCNN_ES 0.8750 0.5940 0.1164 0.8721 0.615 0.115
BCNN_KG 0.8750 0.5723 0.1089 0.8787 0.633 0.148
BCNN_PI 0.7875 0.5190 0.8930 0.8098 0.624 0.147
Proposed 0.970 0.834 0.126 0.9213 0.700 0.164
BCNN_ES+KG

Across both datasets, the proposed ES+KG hybrid consistently outperforms individual acquisition functions, delivering the
highest mean and validation accuracies with faster, more stable convergence. By jointly leveraging ES-driven exploration and
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KG’s informed exploitation, the method achieves a superior balance that yields robust and reliable hyperparameter optimization
for BCNN.

1.9. Implementation of CNNs with Optimized Hyperparameters of Dataset 1 and Dataset_2

This section presents the implementation of CNNs using the optimized hyperparameters obtained from the proposed EBO
framework for both datasets, dataset_1 (binary classification) and dataset_2 (multi-class classification). The optimized
hyperparameters include architectural parameters (such as the number of convolutional layers, filter sizes, kernel dimensions,
and dropout rates) and training parameters (such as learning rate, batch size, and optimizer type). For each dataset, the CNN
model is constructed based on the optimized architectural hyperparameters, followed by training and evaluation using the
corresponding optimized training hyperparameters. The evaluation of the optimized models is conducted using standard
performance metrics, including accuracy, precision, recall, F1-score, and specificity, which together provide a comprehensive
assessment of classification performance. Accuracy represents the percentage of total samples that are correctly classified, while
precision evaluates the ratio of true positive predictions to all positive predictions, reflecting the model’s ability to minimize
false positives. Recall (or sensitivity) measures the proportion of true positives accurately detected, which is particularly
important in medical diagnosis to avoid missed cases. F1-score is the harmonic mean of precision and recall, balancing both
metrics into a single measure of performance. Finally, specificity assesses the ability of the model to accurately classify
negatives, thereby decreasing the rate of false positives. Subsection 4.3.1 details the optimized_CNN1 implementation for
dataset_1, while Subsection 4.3.2 presents the implementation optimized_CNNZ2 for dataset_2.

1.9.1. Construction and Evaluation of Optimized_CNN1 Model for Dataset_1

The optimized_CNNZ1 for dataset_1 was constructed using the best hyperparameters obtained through the EBO framework.
These are “number of conv blocks: 2; learning rate: 0.003920476718634066, optimizer: Nadam; batch_size: 16;
filters_block_1: 32; filter_size_block_1: (2, 2); dropout_rate_block_1: 0.4; activation_block_1: prelu; pooling_layers_block_1:
maxpooling; batch_normalization_block_1: yes; filters_block 2: 32; filter_size_block_2: (3, 3); dropout_rate_block_2: 0.3;
activation_block 2: relu; pooling_layers block 2: average pooling; batch normalization_block 2: no”. These optimized
hyperparameters aim to optimize the trade-off between network depth, regularization, and computational performance for binary
classification of brain MRI images. Fig. 8 presents a structured diagram of the optimized CNN architecture, offering a visual
depiction of the model’s design by using these optimized hyperparameters. The dataset, consisting of 3,000 MRI images of brain
tumor detection (Tumorous & Non-tumorous), was resized to 224 x 224 pixels and divided into 80% training, 10% validation,
and 10% testing sets.

Splitting Dataset as 80:10:10 and use optimized Training Hyperparameters: batch_sizel 6, Nadam optimizer,
learning_rate: 0.0039204767 18634066
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Fig. 8. Architecture of Optimized_CNNZ1 using optimized hyperparameters for the detection of MRI brain tumor
(dataset_1)
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Fig. 9. Confusion matrix and performance metrics of Optimized_CNN1 model on dataset_1
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The performance analysis of the optimized CNN model for dataset_1, trained with hyperparameters (learning rate:
0.003920476718634066, optimizer: Nadam, batch size: 16, epochs: 30), demonstrates highly effective classification capability.
The confusion matrix in Fig. 9 indicates an almost perfect classification, with 148 true negatives, 146 true positives, and only 2
false positives and 4 false negatives. This indicates that the model preserves strong predictive accuracy for both classes. The bar
chart (Fig. 9) of test metrics provides additional insights. The testing loss is 0.094, which signifies minimal error and suggests
that the model has achieved strong convergence without significant overfitting. The accuracy is 98%, reflecting highly reliable
overall performance on unseen test data. Moreover, precision (98.6%) indicates that false positives are extremely low, while
recall (97.3%) confirms the model’s strong ability to detect actual positive cases. The F1-score (98%) shows an optimal balance
between precision and recall, enabling the model to be robust for real-world deployment. Additionally, specificity (98.7%)

highlights the model’s ability to correctly detect negative cases, reducing the likelihood of misclassifying normal or non-tumor
images as tumors.

These results collectively confirm that the chosen optimization strategy, including the Nadam optimizer and adaptive learning
rate, significantly enhances convergence speed and generalization ability. The combination of optimized hyperparameters,
regularization techniques (dropout and batch normalization), and effective architecture design has contributed to achieving high
classification performance across all evaluation metrics. This level of accuracy and consistency is crucial in medical imaging
applications, where diagnostic reliability is of utmost importance.

1.9.2. Construction and Evaluation of Optimized_CNN2 Model for Dataset_2

The best hyperparameters for optimized_CNN2 model for dataset 2 are: learning_rate: 0.009816636240589462; optimizer:
SGD; batch_size: 8; number_of_conv_blocks: 3; filters_block_1: 64 filter_size_block_1: (3, 3) dropout_rate_block_1: 0.3
activation_block_1: leakyrelu pooling_layers_block_1: maxpooling batch_normalization_block_1: yes filters_block_2: 64
filter_size_block_2: (2, 2) dropout rate_block_2: 0.3 activation_block_2: prelu pooling_layers_block_2: maxpooling
batch_normalization_block_2: yes filters_block_3: 32 filter_size_block_3: (3, 3) dropout_rate_block_3: 0.2 activation_block_3:
leakyrelu pooling_layers_block_3: average_pooling batch_normalization_block_3: no . The optimized CNN model for Dataset
D2 by using the mentioned optimized hyperparameters is designed for effective brain tumor classification into three classes:
Meningioma, Glioma, and Pituitary, as shown in Fig. 10. The dataset, consisting of 3,064 MRI images, was resized to 224 x 224
pixels and divided into 80% training, 10% validation, and 10% testing sets.

The evaluation of the optimized_CNN2 model on dataset_2 is shown in Fig. 11, trained with the hyperparameters (learning rate:
0.009816636240589462, optimizer: SGD, batch size: 8, and 30 epochs), indicates strong performance in multi-class brain tumor
classification (Meningioma, Glioma, Pituitary). The confusion matrix shows that the model correctly classified most instances
across the three classes, with minor misclassifications. Specifically, the first class achieved 68 correct predictions with only 4
misclassifications, the second class had 134 correct predictions with 10 misclassifications, and the third class was classified with
high accuracy, having 93 correct predictions and no errors for other classes. This distribution demonstrates that the model
generalizes well across all classes without significant bias toward any particular category. The test metrics further support the
model’s effectiveness. The loss value of 0.199 indicates efficient convergence with minimal error. The overall accuracy of 95.5%
reflects reliable classification across all tumor types. Precision (94.6%) shows that the model maintains a low false-positive rate,
while recall (95.8%) suggests strong sensitivity in identifying actual positive cases. The F1-score of 95.1% confirms a well-
balanced trade-off between precision and recall, which is critical for medical diagnostic applications. Furthermore, the specificity
(97.7%) indicates excellent performance in correctly identifying negative instances, reducing the likelihood of incorrect tumor
detection.
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1.10. Comparison Analysis with Existing Methods

The comparative validation of the proposed optimized CNNs in comparison with existing state-of-the-art methods in Table 6
highlights both performance and methodological distinctions. Some prior works, such as [102] and [103], reported very high
accuracies above 99% by employing exhaustive GS across extremely large search spaces, ranging from 716,800 to 829,440
configurations with dimensionality between 5 and 9. While such exhaustive strategies ensured strong performance, they required
substantial computational resources, making them less practical for real-world clinical deployment. Likewise, studies such as
[85] and [84] applied Bayesian optimization over hybrid infinite search spaces, which provided flexibility but suffered from
poorly defined configuration boundaries and heavy computational demand. In contrast, the proposed models, trained on Kaggle-
based datasets, achieved competitive and balanced results. On the Br35H dataset (dataset 1), the model reached 98.00%
accuracy, 97.33% recall, 98.65% precision, and 97.99% F1-score, while on the custom CNN dataset, it achieved 95.79%
accuracy, 95.81% recall, 95.11% precision, and 95.44% F1-score. Although slightly lower in accuracy than the top-performing
existing approaches, the proposed models exhibit superior balance in recall and F1-score, metrics that are clinically more relevant
as they directly reduce the risk of false negatives.

A major strength of the proposed framework lies in its efficient and structured hyperparameter optimization strategy. Unlike
previous works that relied on excessively large finite search spaces or undefined infinite ones, the proposed method explores a
10-dimensional hybrid search space that integrates both discrete design parameters and a continuous learning rate. This balance
ensures comprehensive exploration of architectural, regularization, and optimization aspects without incurring the computational
infeasibility of prior methods. Furthermore, many studies employing BO rely on the default GP surrogate and the El acquisition
function, which, while effective, may limit the diversity and adaptability of the search process. In contrast, the proposed EBO
approach employs a BCNN surrogate in combination with ES+KG acquisition, which not only improves search efficiency but
also introduces uncertainty quantification, enhancing interpretability and trust in medical applications. This combination of
computational efficiency, balanced performance across metrics, and added reliability positions the proposed method as a strong
and clinically practical alternative to existing state-of-the-art approaches.

Table 6 Comparison analysis of proposed optimized CNN Models with state-of-the-art optimized CNN methods for
MRI Brain Tumor Classification
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IV (1712)
Opti  Kaggl Optimized Number of Conv dimensiona EBO: 980 973 986 979 98.6
mize e _CNN1 Blocks: [2, 3, 4, 5]; lity =10 BCNN 0 3 5 9 7
d datas Tumorous Filters per Block: Search- _ES+K
CN et (1500) and  [32, 64, 128, 256]; spacesize= G
Ns (Br35 non- Filter Size: [(2,2), infinite
with  H) Tumorous (3,3)]; Dropout Rate:  (Hybrid
Prop (3000 (1500) [0.2,0.3,0.4]; Search-
osed ) Activation Function:  space)
HP Figsh ~ Optimized ["relu™, "leakyrelu™, 957 958 951 954 977
(@] are _CNN2 "prelu™, ""swish™, 9 1 1 4 3
(Chen MEN hard_swish.]; Pooling
get (708) vs Type:
al.) Glioma [*maxpooling"’,
(3064  (1426) vs ""average_pooling"'];
) PT (930) Batch Normalization:

['yes™, "no™];
Learning Rate: [1e-3,
le-2]; Optimizer:
['"'SGD",
"RMSprop",
"Adam",
""Adadelta™,
""Nadam'']; Batch
Size: [8, 16, 32]

HPO: Hyperparameters Optimization, ACC: Accuracy, PRE: Precision, SPE: Specificity, F1_S: F1_Score, MEN: Meningioma,

PT: Pituitary, MST: Metastatic

2. Conclusion and Future Work

This study introduced BCNN as the surrogate model in BO and proposed an Enhanced Bayesian Optimization (EBO) framework
for optimizing the hybrid and high-dimensional hyperparameter search space of CNNs in MRI-based brain tumor detection and
classification. The framework employed an objective function of maximizing validation accuracy (Val_Acc) and systematically
benchmarked four surrogate models (GP, RF, BNN, and BCNN) with five acquisition functions (El, PI, UCB, ES, and KG)
applied across two datasets (detection and classification of brain tumors) and validated over 30 trials. Based on these evaluations,
the Bayesian CNN combined with a novel ES+KG hybrid acquisition function, designed to balance exploration and exploitation,
was proposed as the EBO framework. The EBO framework was executed for 30 independent trials on both datasets to obtain
optimized hyperparameters, which were subsequently used to train two CNN architectures: optimized_CNN1 for dataset_1
(tumor vs. non-tumor) and optimized_ CNN2 for dataset_2 (glioma, meningioma, pituitary). Both optimized models consistently
outperformed state-of-the-art approaches across multiple performance metrics, including accuracy, recall, precision, F1-score,
and specificity. These results demonstrate not only the superior classification ability of the proposed EBO framework but also
its robustness, reproducibility, and computational feasibility in high-dimensional hybrid search spaces.

For future work, the framework can be extended to larger and more diverse datasets, multi-modal imaging, and 3D volumetric
analysis, as well as adapted for multi-objective optimization. Exploring advanced surrogate models and real-time clinical
integration with model compression and clinician-in-the-loop validation will further enhance its robustness and translational
impact.
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