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ABSTRACT 

Background and Objective: Bayesian Optimization (BO) is a powerful strategy for optimizing complex black-box functions and 

is widely used for hyperparameter tuning in machine learning. Traditional BO methods commonly use Gaussian Processes (GPs), 

Random Forests (RF), or Bayesian Neural Networks (BNNs) as surrogate models. However, they struggle to scale in hybrid and 

high-dimensional search spaces and often fail to capture the spatial hierarchies required for image-based tasks such as those 

handled by Convolutional Neural Networks (CNNs). This study aims to overcome these limitations by proposing an Enhanced 

Bayesian Optimization (EBO) framework specifically designed to optimize CNN hyperparameters for brain tumor detection and 

classification using MRI data. Methods: A Bayesian Convolutional Neural Network (BCNN) is introduced as a novel surrogate 

model to address the hybrid and high-dimensional hyperparameter search spaces of CNNs. Its performance is benchmarked 

against GP, RF, and BNN, each paired with five acquisition functions: Expected Improvement (EI), Upper Confidence Bound 

(UCB), Probability Improvement (PI), Entropy Search (ES), and Knowledge Gradient (KG). Experiments on two MRI datasets - 

binary (tumor vs. non-tumor) and three-class (glioma, meningioma, pituitary), show BCNN consistently outperforms other 

surrogates. To further improve validation accuracy, the two best acquisition functions are hybridized with Bayesian CNN to form 

the EBO framework. Results: The Bayesian CNN surrogate outperformed GP, RF, and BNN across acquisition functions, with 

ES and KG showing the best mean performance. The proposed hybrid BCNN_ES+KG (EBO) achieved the highest validation 

accuracies of 97.0% (Dataset D1) and 92.13% (Dataset D2), surpassing single acquisition functions. Using the optimized 

hyperparameters, Optimized_CNN 1 reached 98.0% accuracy and Optimized_CNN 2 achieved 95.79% accuracy, both 

outperforming existing state-of-the-art methods. Conclusions: The proposed EBO framework, using Bayesian CNN as a surrogate 

model combined with a hybrid ES+KG acquisition strategy, effectively optimizes high-dimensional CNN hyperparameters. The 

optimized CNNs achieved superior performance, validating the effectiveness and generalizability of EBO for brain tumor 

detection and classification using MRI data. 
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INTRODUCTION 
Optimization plays a pivotal role across diverse areas of scientific and engineering disciplines, including operations research, 

control systems, artificial intelligence, and computational biology. In recent years, its significance has grown substantially in the 

domains of Machine Learning (ML) and Deep Learning (DL), where model performance is often governed by the selection of 

optimal hyperparameters and architectural configurations. Many modern ML models involve objective functions that are non-

convex, non-differentiable, noisy, or expensive to evaluate, making them difficult to optimize using classical gradient-based 

methods. As a result, researchers have increasingly relied on metaheuristic and probabilistic optimization techniques that can 

efficiently search large and complex parameter spaces without relying on explicit gradient information. Within the domain of 

deep learning, especially with CNNs, effective optimization of architectural and training hyperparameters can significantly 

improve accuracy, generalization, and computational efficiency across various tasks, including image classification, object 

detection, and medical diagnosis [1 - 4]. Consequently, robust optimization techniques have become a cornerstone in the 

development and deployment of high-performing ML models. 

 

CNNs have emerged as a powerful deep learning architecture, particularly effective in processing and analyzing image data due 

to their capacity to represent spatial hierarchies and patterns. In the domain of medical imaging, CNNs have been widely adopted 

for applications including classification, detection, and segmentation of abnormalities, including brain tumors. Brain tumor 

detection and classification using MRI are critical tasks, where accurate and timely diagnosis greatly enhances treatment 

effectiveness and patient survival. CNN-based models have shown remarkable performance in these applications through 

automatically learning discriminative characteristics from raw imaging data, thereby minimizing reliance on handcrafted feature 

engineering [5, 6]. However, the effectiveness of CNNs strongly depends on the selection of optimal hyperparameters such as 
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the number of convolutional blocks, filter sizes, learning rate, dropout rate, batch size, and the choice of optimizer. These 

hyperparameters influence both the architectural design and the training dynamics of the network, thereby playing a critical role 

in determining its generalization ability. The optimization of these parameters becomes significantly more challenging in high-

dimensional and hybrid search spaces, which may include a mix of continuous, discrete, and categorical variables. In such 

scenarios, the interaction between hyperparameters is often highly interdependent and dataset-specific, making the search for 

optimal configurations more difficult. Manual tuning or traditional approaches like grid and random search are inefficient and 

computationally expensive, especially when navigating these complex search spaces. This limitation highlights the urgent need 

for more advanced, scalable, and data-efficient optimization strategies capable of effectively exploring hybrid and high-

dimensional hyperparameter spaces [2, 3]. 

 

The interest in the hyperparameter optimization is strongly linked to the interest in developing dependable deep learning models 

for a wide range of applications [7-13], and as the latest studies [14-18] show, the adjustment of hyperparameters can 

significantly improve CNN’s performance. Numerous techniques exist for optimizing over hyperparameter settings, ranging 

from straightforward processes like grid or random search [1] to more complex metaheuristic approaches like evolutionary 

algorithms or Genetic Algorithms [19-23]. However, these methods typically demand a substantial number of evaluations, which 

can be computationally prohibitive. In contrast, Bayesian Optimization provides an effective framework for global optimization, 

particularly when dealing with costly, noisy, and black-box functions. By modeling uncertainty in a principled way, it enables a 

natural trade-off between exploring novel regions of the search space and exploiting known promising regions. Bayesian 

optimization [24, 25] has been broadly applied across various areas such as chemical design [26, 27], material science [28], 

aerospace engineering [29], civil engineering [30], and hyperparameter optimization [31, 32]. BO is highly data-efficient, as it 

incorporates prior knowledge about the objective function and strategically balances exploration (searching unknown areas) and 

exploitation (refining known good areas). Formally, consider the maximization of an unknown, expensive-to-evaluate function:   

                            𝒙∗ = 𝐚𝐫𝐠 𝐦𝐚𝐱 𝒇(𝒙)                                                                                                                                                                                           

xX indicate the decision/search space of interest, and 𝑥∗ is the global maximum          

         

BO builds a probabilistic surrogate model that estimates the true objective function and utilizes this model to guide the search 

for optimal configurations. BO begins with a prior distribution over the objective function and updates it using Bayes’ theorem 

as new data is collected. This generates a posterior distribution that reflects an improved understanding of the function. An 

acquisition function then evaluates where the next evaluation should occur by balancing exploration of uncertain regions and 

exploitation of high-performing areas. This enables BO to make intelligent decisions about which configurations to test next, 

even with a limited number of evaluations [33, 34]. In the context of tuning hyperparameters in convolutional neural networks, 

where the search space is often hybrid and high-dimensional, BO has shown great promise. It efficiently navigates the complex 

relationships between parameters such as filter sizes, dropout rate, learning rate, and optimizer type. By capturing these 

dependencies and reducing the computational burden, BO enables the discovery of near-optimal architectures that generalize 

well to unseen data [2, 3]. 

 

Despite the effectiveness of Bayesian Optimization in hyperparameter tuning, traditional BO methods face several limitations. 

Gaussian Processes, commonly used as surrogate models, struggle to scale with larger datasets due to their high computational 

cost. They also rely on assumptions that may not hold in complex search spaces involving both discrete and continuous 

parameters. These issues lead to poor generalization and reduced efficiency in modeling the objective function [35, 36]. Another 

challenge lies in the acquisition functions used to guide the search. A proper balance between exploration and exploitation is 

critical. Over-exploitation can cause the model to get stuck in local optima, while over-exploration can waste computational 

resources [33]. Moreover, standard BO lacks spatial and structural awareness, making it less effective in hybrid, hierarchical, 

and high-dimensional search spaces often seen in many applications [37, 38]. These gaps highlight the need for advanced 

optimization approaches that can scale efficiently, model complex functions accurately, and balance the exploration-exploitation 

trade-off more effectively. 

 

Hyperparameter optimization in CNNs becomes particularly challenging in high-dimensional and hybrid search spaces. As 

Frazier [34] states that “developing Bayesian optimization methods that work well in high dimensions is of great practical and 

theoretical interest”. As more complicated the models, the quantity of hyperparameters and the dimension of the search area in 

hyperparameter optimization of machine learning models also grow [39]. Addressing the limitations of traditional Bayesian 

Optimization is essential for advancing the effectiveness of convolutional neural networks in medical imaging. In brain tumor 

classification, where accurate and timely diagnosis can significantly influence patient outcomes, even marginal improvements 

in model performance are valuable. However, real-world datasets in this domain are often small, imbalanced, and high in 

dimensionality, which makes the hyperparameter optimization task even more challenging. Efficient and scalable optimization 

methods can enhance model generalization and reduce training time, enabling the deployment of more accurate and reliable 

diagnostic tools in clinical settings. 

 

The purpose of this study is to address the challenges of traditional BO such as scalability, limited generalization in hybrid/high-

dimensional spaces, and imbalance in exploration and exploitation when tuning CNN hyperparameters for brain tumor 

classification across two publicly available datasets. The main contributions are: 

 Introduce BCNN as a novel surrogate model for optimizing CNN hyperparameters in complex search spaces. 

 Conducted comprehensive benchmarking of BCNN against GP, RF, and BNN across multiple acquisition functions. 

 Introduced the Enhanced Bayesian Optimization (EBO) framework, which integrates BCNN with a hybrid ES+KG 

acquisition strategy. 
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 Developed optimized CNN architectures using hyperparameters identified by EBO for improved model design. 

 Performed a comparison of the optimized CNN architectures with existing state of the art methods. 

The rest of this paper proceeds the follows sections. The Background and Related Work section provides the theoretical 

foundation, covering surrogate models, acquisition functions, and prior studies on BO, including its applications in CNN 

hyperparameter optimization for medical imaging. The Proposed Methodology describes the dataset, objective function, search 

space, and details of the EBO algorithm. The Results and Discussions section presents the experimental findings, including the 

selection of the optimal surrogate model and acquisition functions, evaluation of the proposed BCNN_ES+KG framework, 

construction of optimized CNN models for dataset_1 and dataset_2, and comparative analysis with existing methods. Finally, 

the Conclusion and Future Work section summarizes the main findings and proposes directions for further study. 

 

BACKGROUND AND RELATED WORK 
1.1. Background 

The roots of Bayesian optimization trace back to the work of Harold Kushner [25], who utilized Wiener processes for 

unconstrained one-dimensional optimization tasks and maximizing the likelihood of improvement when choosing the subsequent 

sample. Mockus [40] introduced an innovative acquisition function named Expected Improvement (EI), which was subsequently 

applied in additional research by Zilinskas [41]. Perttunen [42], Stuckman [43], and Elder [44] extended Kushner’s approach to 

address optimization problems in higher-dimensional spaces. In recent decades, Bayesian optimization has seen significant 

growth and has been effectively used to address a variety of real-world issues, such as materials design and discovery [45], 

sensor networks [46], the financial sector [47], and experimental design [48]. Recently, it is increasingly more popular within 

the field of machine learning, especially in reinforcement learning [49], neural architecture search [50], and hyperparameter 

tuning [51].  

 

1.1.1. Surrogate models  

In BO, a surrogate model is a probabilistic approximation of the true objective function. Instead of querying the real function 

directly at every iteration, BO builds and updates a surrogate model to predict outcomes, enabling the algorithm to decide where 

to sample next based on knowledge. Regarding the issue of optimizing a black-box (objective) function that is costly to evaluate,  

𝑓 = 𝑅𝑑 → 𝑅 takes an input vector 𝑥 ∈ 𝑅𝑑 (with d dimensions) and outputs a scalar value 𝑓(𝑥) ∈ 𝑅. Suppose the collected data 

with n observations is 𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑛 , where each output 𝑦𝑖 is a disruptive analysis of the actual function: 

     𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜖, 𝜖~𝑁(0, 𝜎2)                           

Here, ϵ represents Gaussian noise with zero mean and variance 𝜎2, which models measurement uncertainty or randomness.       

 Gaussian Process (GP): A GP [52] is not parametric, and commonly used Bayesian approach to regression. It 

establishes a prior over functions, and after data observation, it produces a posterior that represents an updated belief about the 

function. Assume a Gaussian Process prior over the function 𝑓(𝑥):        
𝑓(𝑥)~𝐺𝑃(𝜇(𝑥), 𝑘(𝑥, 𝑥′) 

Which means that any limited collection of function values [𝑓(𝑥1), 𝑓(𝑥2), … … , 𝑓(𝑥𝑛)] follows a normal multivariate distribution 

with a mean function, 𝜇(𝑥) = 0 for ease of use and the covariance function, 𝑘(𝑥, 𝑥′) calculates how similar two inputs are 𝑥 and 

𝑥′. For the given set of prior observations 𝐷, the Gaussian posterior distribution of the function value at a new location 𝑥∗ is given 

by: 

𝑓(𝑥∗) | 𝐷, 𝑥∗ ~ 𝑁(𝜇∗(𝑥∗), 𝜎2
∗(𝑥∗)) 

where the posterior mean 𝜇∗(𝑥∗) and variance 𝜎2
∗(𝑥∗) are analytically derived using the kernel function. The mean is determined 

as 𝜇∗(𝑥∗) = 𝑘(𝑥∗, 𝑋)𝑇[𝐾(𝑋, 𝑋) + 𝜎2𝐼]−1𝑦 while the variance is 𝜎2
∗(𝑥∗) = 𝑘(𝑥∗, 𝑥∗) − 𝑘(𝑥∗, 𝑋)𝑇[𝐾(𝑋, 𝑋) + 𝜎2𝐼]−1𝑘(𝑥∗, 𝑋). 

Here, 𝑋 = [𝑥1, 𝑥2, … … , 𝑥𝑛]𝑇 denotes the matrix of training inputs and 𝑦 = [𝑦1, 𝑦2, … … , 𝑦𝑛]𝑇 the vector of corresponding outputs. 

The kernel matrix 𝐾(𝑋, 𝑋) ∈ 𝑅𝑛×𝑛 captures pairwise covariances between training points using a predefined kernel function 

𝑘(. , . ) and 𝑘(𝑥∗, 𝑋) ∈ 𝑅𝑛 is the covariance vector among the new input 𝑥∗ and all training inputs. The term 𝜎2𝐼 accounts for the 

observation noise and ensures numerical stability during matrix inversion.                                                                                                                                                                                                                                                            

 Bayesian Neural Network (BNN): A (BNN) [53] is a neural network framework that applies Bayesian principles to 

capture uncertainty in its parameters. It extends conventional neural networks through the introduction of a probabilistic 

framework with respect to the network’s weights and biases of the network. Instead of learning fixed point estimates of the 

parameters, BNNs learn distributions, typically overlaying the network weights w with a prior p(w). For dataset 𝐷 =
{(𝑥𝑖 , 𝑦𝑖)}𝑖=1

𝑛 , the objective is to determine the posterior distribution 𝑝(𝑤 | 𝐷) which measures the model parameters' degree of 

uncertainty. However, due to the intractability of the exact posterior, approximate inference methods like variational inference or 

Markov Chain Monte Carlo (MCMC) [54] are employed. In variational inference [55, 56], for instance, a simpler distribution 

𝑞(𝑤) is optimized to minimize the Kullback–Leibler divergence to approximate the true posterior, 𝐾𝐿(𝑞(𝑤)||𝑝(𝑤|𝐷). Once the 

approximate posterior is learned, predictions at a new input 𝑥∗ are made by marginalizing over the weight distributions, yielding 

𝑝(𝑦∗|𝑥∗, 𝐷) = ∫ 𝑝(𝑦∗ | 𝑥∗, 𝑤)𝑞(𝑤)𝑑𝑤. This integral is typically approximated using Monte Carlo sampling [57], by averaging 

outputs over multiple of the network's stochastic forward passes. Mathematically, the predictive mean and variance might be 

estimated as: 

𝜇∗(𝑥∗)  
1

𝑇
∑ 𝑓(

𝑇

𝑡=1

𝑥∗; 𝑤(𝑡)),     𝜎2
∗(𝑥∗)  

1

𝑇
∑ 𝑓(𝑥∗; 𝑤(𝑡))2 −

𝑇

𝑡=1

𝜇∗(𝑥∗)2  

where 𝑤(𝑡) ~ 𝑞(𝑤) are sampled weights from the learned posterior. 

 Bayesian Convolutional Neural Network (Bayesian CNN): In contrast to standard BNNs, which require explicit 

variational distributions and complex inference methods like MCMC, Bayesian CNNs leverage dropout as an implicit Bernoulli 

variational distribution and utilize efficient Monte Carlo sampling via stochastic forward passes for posterior estimation, making 
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them highly practical for large-scale deep learning tasks [57]. This allows scalable uncertainty estimation and effective surrogate 

modeling for high-dimensional hyperparameter spaces, especially in convolutional architectures where full BNN inference is 

computationally impractical. Thus, the approximate posterior 𝑞(𝜃) is implicitly a distribution induced by dropout masks: 

𝑞(𝜃) = ∏ 𝑝𝑖

𝑧𝑖(1 − 𝑝𝑖)
1−𝑧𝑖

𝑖

 

Where, 𝑧𝑖 ∈ {0,1} is a random dropout mask and 𝑝𝑖  is the dropout probability for the 𝑖𝑡ℎ neuron. Mathematically, the predictive 

mean 𝜇∗(𝑥∗) and predictive variance 𝜎2
∗(𝑥∗) are computed over 𝑇 stochastic forward passes, following the expressions: 

𝜇∗(𝑥∗)  
1

𝑇
∑ 𝑓𝐵𝐶𝑁𝑁(

𝑇

𝑡=1

𝑥∗; 𝑤(𝑡)),     𝜎2
∗(𝑥∗)  

1

𝑇
∑ 𝑓𝐵𝐶𝑁𝑁(𝑥∗; 𝑤(𝑡))2 −

𝑇

𝑡=1

𝜇∗(𝑥∗)2 

Here, 𝑤(𝑡) represents weights randomly masked through dropout in convolutional and dense layers, and input 𝒙∗ is typically a 

2D or 3D spatial structure (image, not flattened vector). 

 

1.1.2. Acquisition Functions 

BO starts by collecting an initial set of samples from the unknown objective function. Based on these samples, a GP model is 

constructed to estimate the function. An acquisition function for every iteration is computed using the GP and utilized to choose 

the next most promising point for sampling. After evaluating the actual objective function at this point, the latest observation is 

included in the training dataset in order to update the model. Until a termination condition is met, this cycle is repeated. Essential 

utility functions are acquisition functions in guiding the search process toward the optimum of the objective function in BO. 

They help ascertain the next point to sample by balancing exploration and exploitation. This means selecting points not only 

from areas that are expected to give good results but also from regions that are still uncertain or less explored. Below, we briefly 

review some of the frequently employed acquisition functions. 

 Probability of Improvement (PI): PI [25] is a common acquisition function in BO, particularly valued for its simplicity 

and intuitive approach. In mathematical terms, the PI function calculates the probability that the value of the unknown objective 

function at a novel location 𝑥∗ will exceed the best function value observed so far, denoted as 𝑓(𝑥+), by at least a small positive 

threshold . This threshold allows the optimization process to maintain a degree of exploration. The formula for PI is expressed 

as: 

𝑃𝐼(𝑥∗) =   (
𝜇(𝑥∗) − 𝑓( x+) − 

𝜎(𝑥∗)
) 

         where 𝜇(𝑥∗) and 𝜎(𝑥∗) symbolize the predicted mean and standard deviation of the function value at point 𝑥∗ as estimated 

by the surrogate model, and  is the standard normal distribution's cumulative distribution function (or CDF), which is equal to 
1

√2𝜋
 ∫ exp (−𝑡2 2⁄ )𝑑𝑡

𝑥

−∞
. 

 Expected Improvement (EI): EI [40] extends the notion of surpassing the best observed value by considering both the 

probability and the anticipated magnitude of improvement, making it more informative and effective in complex, uncertain search 

spaces. It calculates as the expected value of improvement over 𝑓(𝑥+), by: 

𝐸𝐼(𝑥∗) = (𝜇(𝑥∗) − 𝑓(𝑥+) − ) ∙ (𝑍) + 𝜎(𝑥∗) ∙ (𝑍) 

         Where 𝑍 = (
𝜇(𝑥∗)−𝑓( x+)−

𝜎(𝑥∗)
),  and  are the Gaussian cumulative distribution function (CDF) and probability density 

function (PDF), respectively. EI, originally introduced in 1975 [40] and later popularized by Jones et al. [58], has been extensively 

studied and applied across diverse optimization scenarios. These include parallel, high-dimensional, noisy, constrained, multi-

objective, and multi-fidelity optimization problems.  

 Knowledge Gradient (KG): PI is the simpler acquisition function, which only considers the likelihood of improving 

over the current best, or EI, which incorporates the magnitude of that improvement. KG [59] goes further by estimating how 

much the new observation at a given point will enhance the overall decision-making quality. KG is mathematically intended to 

choose the subsequent query point 𝑥∗ by maximizing the expected increase in the maximum posterior mean of the objective 

function following the observation of its value at 𝑥∗. Let 𝜇(𝑥) denote the current posterior mean of the surrogate model, and let 

𝜇+(𝑥) represent the updated posterior mean after including the observation at 𝑥∗. The KG at the point 𝑥∗ is then defined as: 

𝐾𝐺(𝑥∗) = 𝐸[𝑚𝑎𝑥 𝜇+(𝑥)] − 𝑚𝑎𝑥 𝜇(𝑥) 

                  

 Upper Confidence Bound (UCB): The confidence bound approach, known as Upper Confidence Bound (UCB) for 

tasks involving maximization and Lower Confidence Bound (LCB) for tasks involving minimization, is formulated to minimize 

regret in the context of multi-armed bandit problems. It does so by strategically combining the predicted reward with the 

associated uncertainty, effectively balancing exploration and exploitation during the search process [60]. Mathematically, UCB 

is described as: 

𝑈𝐶𝐵(𝑥∗) = 𝜇(𝑥∗) + 𝛽 ∙ 𝜎(𝑥∗) 

where 𝛽 > 0 is a metric to manage the trade-off between exploitation and exploration. 

 Entropy Search (ES): ES [61, 62] chooses the subsequent assessment point by seeking to maximize the expected 

decrease in uncertainty where the global optimum is located. Mathematically, the next point 𝑥∗ is chosen by maximizing the 

expected decrease in the distribution's entropy over the minimum's location. This is expressed as: 

𝐸𝑆(𝑥∗) = arg 𝑚𝑎𝑥 𝐸𝑦(𝑥)[ 𝐻 [ 𝑝(𝑥𝑚𝑖𝑛  𝐷)] − 𝐻 [ 𝑝(𝑥𝑚𝑖𝑛  𝐷 ∪ {(𝑥, 𝑦(𝑥))}]] 

𝐻[∙] denotes entropy, 𝑝(𝑥𝑚𝑖𝑛  𝐷) is the current posterior distribution of the minimum location given the observed data 𝐷, and 

𝑦(𝑥) represents a possible observation at the point 𝑥. The expectation is taken over the predictive distribution of the surrogate 

model. In essence, Entropy Search evaluates each candidate point based on how informative it is expected to be in reducing 

uncertainty about the global optimum, rather than just focusing on improvement or confidence bounds.  
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1.2. Related Work  

The development of effective Bayesian Optimization methods for complex, high-dimensional, and hybrid hyperparameter spaces 

requires a thorough understanding of existing approaches. This section reviews prior work on standard BO, alternative surrogate 

models, acquisition function innovations, high-dimensional optimization strategies, and hyperparameter tuning for deep learning 

models, particularly CNNs.  

 

1.2.1. Standard Bayesian Optimization 

BO [63] is a well-known strategy for the worldwide optimization of expensive, noisy black-box functions. The literature on GP 

optimization is extensive. In GP optimization, several heuristics for balancing exploration and exploitation have been put forth. 

Recent advancements have significantly enhanced Bayesian optimization by improving surrogate modeling techniques, 

acquisition functions, and scalability. GP-UCB was proposed in [60], which optimizes unknown, noisy functions using Gaussian 

Processes and achieves sublinear regret bounds by leveraging the concept of maximal information gain, but de Freitas et al in 

[64] showed sublinear regret for GP bandits with noisy observations, and analyzed the deterministic case and proved a 

significantly faster exponential convergence rate under certain regularity conditions. EI algorithms in efficient global optimization 

converge to the minimum of functions in the replicating-kernel Hilbert space defined by a fixed GP prior, with proven 

convergence rates [65]. A novel surrogate-based collaborative tuning (SCoT) method that leverages knowledge from prior 

experiments to enhance hyperparameter optimization across multiple learning problems, outperforming traditional single-task 

tuning approaches by Bardenet et al. [66]. Mahendran et al. [67] present a randomized Bayesian optimization strategy for adaptive 

MCMC that efficiently tunes proposal parameters for sampling from complex probabilistic graphical models with minimal 

objective function evaluations. Because of GP’s adaptability, precisely calibrated uncertainty, and analytical qualities, they are 

typically utilized to build the distribution over functions used in BO [68, 69].  

 

1.2.2. Alternative Surrogate Models 

BO traditionally uses GPs to model expensive black-box functions due to their accurate uncertainty estimation, but the number 

of observations causes GPs to scale cubically, limiting their use in large-scale settings. To address this, Snoek et al. [54] in 2015 

proposed using neural networks for adaptive basis function regression as a surrogate model, achieving linear scalability and 

enabling massively parallel hyperparameter optimization for deep learning tasks. Springenberg et al. [70] introduce a scalable 

Bayesian optimization approach using flexible neural network surrogates combined with stochastic gradient Hamiltonian Monte 

Carlo, enabling efficient optimization across high-dimensional, multi-task, and deep learning settings. To address the scalability 

limitations of GP, study [71] proposes Neural Process for Bayesian Optimization (NPBO), which outperforms or matches 

benchmark methods across power system and standard optimization tasks. Kerleguer et al. [72] suggest GPBNN, a hybrid 

surrogate model combining GP and BNN for hierarchical multi-fidelity modeling, effectively capturing predictive uncertainty 

across fidelity levels. Other surrogate models for Bayesian optimization, like random forests [73] and tree-structured Parzen 

estimators [74, 75], have been the subject of some earlier research. A novel Bayesian Neural Network architecture and algorithm 

that reduces storage complexity and robustly handles predictive uncertainty, avoiding local optima in non-convex settings, was 

introduced in [76].  

 

1.2.3. Optimization in High-Dimensional and Hybrid Spaces 

Optimization of high-dimensional (dimensionality of the search area is calculated by multiplying the number of possible choices 

for each hyperparameter) and hybrid (combination of discrete and continuous inputs) search spaces is highly challenging and 

frequently observed in a few applications. Munteanu et al. [37] introduce a Hashing-enhanced Subspace BO (HeSBO) method 

for high-dimensional BO utilizing subspace embeddings with low dimensions, showing tight GP error bounds and significantly 

improved performance over previous projection-based approaches. Wang et al. [38] recommended Ensemble Bayesian 

Optimization (EBO), a scalable framework that handles high-dimensional inputs, large observation budgets, and batch query 

selection using randomized partitions and a novel TileGP model, enabling efficient BO with tens of thousands of findings. Liu et 

al. [77] present a comprehensive review of scalable GPs, categorizing global and local approximation techniques to address GP’s 

cubic complexity and enhance scalability for big data. Bayesian optimization using GP over sparse axis-aligned subspaces 

(SAASBO) as proposed in [78] enables efficient high-dimensional black box optimization by leveraging Hamiltonian Monte 

Carlo to identify relevant subspaces without problem-specific tuning. Bayesian Optimization has gained popularity for optimizing 

expensive functions with many parameters [79]. To address scalability issues in high-dimensional settings, various structural 

assumptions such as low-dimensional embeddings, additive decomposition, and variable selection have been proposed, often 

requiring tailored acquisition strategies. 

 

1.2.4. Hyperparameter Optimization of CNNs in Medical Imaging 

The comparative study in Table 1 reveals several important limitations in the existing literature. Firstly, none of the selected 

papers provide a detailed explanation of the surrogate models and acquisition functions utilized in their BO frameworks, which 

limits methodological transparency and reproducibility. Specifically, [80, 81, 82, 85, 88, 89, 92] do not specify the search space 

of CNN hyperparameters, leaving unclear the range and structure of the parameters being optimized. Although [83, 84, 86, 87, 

90, 91, 93 -  97] define the search space, they all rely on the default settings of BO using the GP as the surrogate model and EI as 

the acquisition function. Furthermore, none of these studies addresses the complexity introduced by the high-dimensional and 

hybrid search space of CNN hyperparameters, which often includes a mix of continuous, categorical, and conditional parameters. 

Effective optimization in such spaces requires careful adaptation or replacement of both the surrogate model and acquisition 

function, which remains an unexplored direction in these works. 

 

 

http://www.verjournal.com/


 
VASCULAR & ENDOVASCULAR REVIEW 

www.VERjournal.com 

 

 

An Enhanced Bayesian Optimization Method for Tuning of Hybrid and High-dimensional Hyperparameters of CNNs in Brain 
Tumor Detection and Classification 

105 

 

Table 1 A Comparative study of Bayesian Optimization Approaches for CNN Hyperparameter Tuning Across Medical 

Imaging Domains. 

Refe

renc

es 

(Yea

r) 

Domain  Surrog

ate 

Model 

Acquis

ition 

Functi

on 

Hyperparameters 

Tuned 

Key Findings Research Gaps 

[80] 

(202

4) 

Alzheimer’

s Disease 

Detection 

and 

Classificati

on using 

ML with 

CNN 

Features 

Not 

explicit

ly 

stated  

Not 

specifi

ed 

KNN: Number of 

neighbors 

MSVM: Kernel type, 

C, gamma 

DT: Max depth, min 

samples split 

AlexNet’s fully 

connected deep features 

gave best performance; 

KNN achieved 98.45% 

accuracy on the Kaggle 

Alzheimer’s dataset; 

MSVM was best on the 

ADNI dataset. BO 

efficiently optimized 

model performance by 

searching for optimal 

hyperparameters. 

- Used full deep feature 

vectors, leading to high 

dimensionality 

- No feature selection 

was applied 

- No surrogate or 

acquisition function 

details 

 

[81] 

(202

4) 

MRI Brain 

Tumor 

Detection 

(Feature 

Extraction 

+ ML 

Classificati

on) 

Gaussi

an 

Proces

s (GP) 

Not 

specifi

ed 

(defaul

t 

Expect

ed 

Impro

vement 

(EI)) 

Hyperparameters of 

ML classifiers (SVM, 

KNN, DT). not 

specified. 

Combining features of 

shallow and deep 

ResNet18 layers + BA-

optimized SVM 

achieved 99.11% 

detection accuracy and 

97.31% classification 

accuracy. Enhanced 

performance in 

sensitivity, specificity, 

F1, MCC, and Kappa. 

- Surrogate model and 

acquisition function type 

not explicitly mentioned. 

- Search space limited to 

ML classifier 

hyperparameters (SVM, 

KNN, DT), no tuning for 

CNN layers. 

- Hybrid and high-

dimensional search 

space unexplored. 

[82] 

(202

3) 

MRI 

Subsampli

ng and 

Reconstruc

tion 

Empiri

cal 

Gaussi

an 

Proces

s  

Entrop

y-

based 

explor

ation 

(inferr

ed) 

Kernel length scale Achieved 96.3% SSIM 

and < 0.003 NMSE with 

only 12.5% k-space 

sampling; open-loop, 

generalized concentric 

ring subsampling paths 

work efficiently even on 

pathological brains 

without retraining. 

- Only one 

hyperparameter tuned 

(length scale); does not 

explore high-dimensional 

CNN hyperparameter 

space.  

- Uses a fixed GP from 

prior data 

-Acquisition function not 

optimized for 

exploration–exploitation 

trade-off 

[83] 

(202

3) 

MRI Brain 

Tumor 

Detection 

Gaussi

an 

Proces

s (GP) 

Not 

explicit

ly 

stated 

Conv layer size: 5, 7, 9, 

11; Kernel size: 3×3, 

5×5; Filters: 16–256 

(step 16); Dropout rate: 

0.0–0.6 Optimizer: 

Adam, SGD (Nesterov); 

Learning rate: 0.001, 

0.0001 

Achieved 98.01% 

accuracy/F1 on dataset 

1 and 99.62% 

accuracy/F1 on larger 

dataset 2 using BO-

optimized CNNs; 

effective automated 

design of depth/width 

parameters for tumor 

classification. 

- Default surrogate and 

acquisition functions are 

used. 

-Key hyperparameters like 

batch size, activation 

function, and batch 

normalization were not 

included. 

[84] 

(202

2) 

CNN 

hyperpara

meter 

optimizatio

n for brain 

tumor 

classificatio

n using 

CE-MRI  

Gaussi

an 

Proces

s (GP) 

Not 

specifi

ed  

Activation function: 

ReLU, ELU, Sigmoid, 

SELU, Tanh; Batch size: 

1–128; Dropout rate: 

0.1–0.5; Number of 

dense nodes: 32–1024; 

Optimizer: Adam, 

Nadam, AdaMax, 

RMSProp, SGD 

Bayesian Optimization 

significantly improved 

CNN validation 

accuracy to 98.70% 

without data 

augmentation, 

outperforming 

pretrained models like 

VGG16 (97.08%), 

VGG19 (96.43%), 

ResNet50 (89.29%), 

InceptionV3 (92.86%), 

- Search space limited to 

dense layers and 

optimizer, no tuning of 

convolutional layers 

(depth, width, filter size, 

etc.). 

- Surrogate model and 

acquisition function 

settings not customized 

for high-dimensional 

and hybrid search. 
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and DenseNet201 

(94.81%). 

[85] 

(202

1) 

CNN-based 

tumor 

classificatio

n with 

concatenat

ed CNN  

Gaussi

an 

Proces

s (GP 

Not 

specifi

ed 

Not clearly specified The proposed method 

achieved 97.37% 

classification accuracy, 

outperforming previous 

works (accuracy range 

84.19%–96.13%) on the 

same dataset. 

- No exploration of 

search space for 

architectural 

hyperparameters (depth, 

width, kernel size, etc.). 

- Default surrogate and 

acquisition settings of 

BO for complex CNN 

concatenation 

architectures. 

[86] 

(202

4) 

CNN 

architectur

e search for 

ultrasound 

image-

based 

breast 

lesion 

classificatio

n  

Gaussi

an 

Proces

s (GP 

Not 

specifi

ed 

Network depth, 

learning rate, batch 

size, possibly dropout, 

and optimizer 

configuration 

Combining ENAS with 

BO yields robust, 

efficient CNNs; 

Optimizing both cell 

structure and trainable 

hyperparameters 

improves performance, 

achieving low error 

rates on internal 

(≤20.6%) and external 

(avg. 17.3%) datasets 

- No mention of 

acquisition function 

types (e.g., UCB, EI, PI) 

- Limited 

hyperparameter 

diversity  

- Surrogate model 

characteristics were not 

deeply analyzed 

[87] 

(202

3) 

Classificati

on and 

segmentati

on of 

breast 

tumors in 

ultrasound 

(US) 

images 

using CNN 

Gaussi

an 

Proces

s  

Not 

specifi

ed 

Learning rate, 

regularization factor, 

momentum, section 

depth, number of 

convolution filters 

Optimized CNN 

outperforms state-of-

the-art and shallow 

CNNs by ≥3% and 

≥5% respectively; 

Outperforms U-Net 

and FCN in 

segmentation metrics 

(SSIM: 0.98 vs 

0.93/0.92, MSE: 0.01 vs 

0.21/0.28) 

- Not explicitly mentioned 

the surrogate and 

acquisition functions of 

BO. 

- Lack of standardized 

benchmarks for BO in 

CNN hyperparameter 

tuning 

[88] 

(202

1) 

Breast 

histopathol

ogical 

image 

classificatio

n 

Bayesi

an 

CNN 

Not 

specifi

ed 

Not specified (focus is 

on architecture and 

uncertainty 

quantification) 

Bayesian–CNN 

improved accuracy by 

1.2% over TL-CNN; 

Reduced false negatives 

by 11% and false 

positives by 7.7%; 

Further improved by 

modified Bayesian–

CNN with stochastic 

adaptive activation; 6% 

accuracy boost on 77% 

of test data using 

uncertainty 

thresholding 

- BO not used for 

hyperparameter 

optimization 

- Not explicitly 

mentioned the 

acquisition functions 

- No exploration of high-

dimensional or 

hierarchical search 

spaces 

[89] 

(202

2) 

Diabetic 

Maculopat

hy 

detection in 

OCT and 

fundus 

images 

Not 

explicit

ly 

stated  

Not 

specifi

ed 

CNN architecture and 

hyperparameters 

BO significantly 

improved CNN 

performance for both 

fundus and OCT 

images; Proposed 

CNNs outperformed 

several pre-trained 

models (AlexNet, 

VGG16/19, GoogleNet, 

ResNet-50); Statistical 

tests (ANOVA, ROC, 

histograms) validated 

results 

- Surrogate model and 

acquisition functions are 

not explicitly stated 

- Unspecified 

hyperparameters, which 

ones exactly 

- BO applied in a basic 

form without integration 

of uncertainty modeling  
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[90] 

(202

2) 

Retinal 

Disease 

Detection 

using OCT 

Not 

explicit

ly 

mentio

ned 

Not 

specifi

ed 

Optimizer: Adam, 

RMSProp, SGD, 

AdaDelta; Learning 

rate: 1e−3, 1e−4, 1e−5, 

1e−6; Activation 

functions: ReLU, ELU, 

Tanh, Leaky ReLU; 

Neurons in custom 

layers: 64, 128, 256, 

512, 1024 Batch size: 

32, 64, 128 

DenseNet201 achieved 

>99% accuracy; 

Transfer learning with 

Bayesian optimization 

significantly improved 

performance; Image 

augmentation helped 

increase generalization 

- Surrogate model and 

acquisition function not 

explicitly explored 

- Trade-off between 

hyperparameter tuning 

and training time not 

fully addressed 

 

[91] 

(202

2) 

Tuberculos

is Detection 

from Chest 

X-rays 

Not 

explicit

ly 

stated  

Not 

specifi

ed 

Kernel Size: [3 to 11]; 

Number of Filters: [16 

to 128]; Kernel Stride: 

[1 to 5]; Pooling 

Method: [Max, 

Average, GlobalMax]; 

Dense Layer Units: 

[128 - 1024]; Learning 

Rate: [0.1 to 0.001]; 

Optimizer: [Adam, 

AdaGrad, AdaDelta, 

SGD] 

Shallow-CNN achieved 

peak accuracy and F1-

score of 0.95, 

outperforming 

modified DenseNet 

(0.91); AUC of 0.976 

with ROC; Shallow-

CNN is simpler, more 

interpretable, and 

robust to noise 

compared to DenseNet; 

CAM and LIME 

confirmed lower lung 

regions as key for TB 

detection 

- Surrogate model and 

acquisition functions not 

specified 

- Trade-off between 

hyperparameter tuning 

and training time not 

fully addressed 

[92] 

(202

4) 

COVID-19 

and Lung 

Disease 

Diagnosis 

from Chest 

X-rays 

Not 

explicit

ly 

stated 

EI  SVM kernel function: 

[Gaussian, Linear, 

Polynomial]; Box 

Constraint, Kernel 

Size, Standardization, 

Polynomial Order 

Hybrid CNN + SVM 

kernel with Bayesian 

Optimization achieved 

98.7% accuracy, 

97.89% sensitivity, 

98.2% precision, and 

97.89% F1-score; SVM 

(Gaussian kernel) 

outperformed other 

kernel function; Five-

class classification 

including COVID-19, 

Pneumonia 

(bacterial/viral), 

Normal, and TB was 

successfully performed 

- Surrogate model not 

disclosed  

- CNN hyperparameter 

tuning details are sparse 

[93] 

(202

3) 

Tuberculos

is 

Diagnosis 

from Chest 

X-rays 

Not 

explicit

ly 

stated  

Not 

specifi

ed 

Number of hidden 

layers: 1–10; Number 

of nodes per layer: 5–

512; Learning rate: 

0.000001 to 0.1 

Activation functions: 

ReLU, Sigmoid, Tanh, 

Linear Optimizers: 

SGD, Adam, Adadelta, 

Adagrad, RMSprop 

Features extracted 

from VGG16, 

EfficientNetB0, 

ResNet101, and 

DenseNet201; 

EfficientNetB0 + DNN 

(optimized with 

Bayesian method) 

achieved 99.29% 

accuracy 

- Surrogate model and 

acquisition functions not 

disclosed 

- No exploration of high-

dimensional or 

hierarchical search 

spaces 

[94] 

(202

1) 

COVID-19 

Detection 

from Chest 

X-rays  

Not 

explicit

ly 

stated  

Not 

specifi

ed 

Batch Size (5 to 100); 

Momentum (0.01 to 

0.1); Learning Rate (log 

scale between 0.01 and 

0.02); Optimizer (SGD, 

Adam, RMSprop, 

Adagrad, Adadelta, 

Adamax); Pre-trained 

CNNs (ResNet18, 

ResNet50, GoogleNet, 

VGG16, SqueezeNet, 

DenseNet) 

Proposed MKCovid-19 

workflow uses transfer 

learning + Bayesian 

Optimization to fine-

tune models; Accuracy 

of 98% on test data 

achieved 

- Surrogate model and 

acquisition functions not 

described 

- Limited 

hyperparameter 

diversity 

[95] COVID-19 GP EI Number of Dense Introduced - A limited number of 
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PROPOSED METHODOLOGY 
The proposed methodology optimizes CNNs for MRI brain tumor detection and classification using an EBO framework, as 

depicted in Fig. 1. A hybrid and high-dimensional search space of CNN hyperparameters, comprising categorical, discrete, and 

continuous parameters, is defined, with the optimization objective being the maximization of validation accuracy. Two 

benchmark MRI datasets are used for evaluation: dataset_1, containing 3,000 images for binary classification of tumors versus 

non-tumors, and dataset_2, comprising 3,064 images for three-class classification of meningioma, glioma, and pituitary tumors. 

In the initial stage, BO is applied to both datasets using surrogate models such as GP, RF, BNN, and Bayesian CNN, each tested 

with acquisition functions including EI, ES, PI, UCB, and KG over 30 trials. The outputs, consisting of optimized 

hyperparameters, validation accuracy, and corresponding mean and standard deviation, are analyzed to determine the best 

surrogate model and the two most effective acquisition functions, forming the foundation of the proposed EBO. This enhanced 

approach combines the identified surrogate model with hybrid acquisition functions to address the challenges of optimizing 

hybrid and high-dimensional hyperparameters. The EBO is then executed on both datasets for 30 trials, with results measured 

in terms of best validation accuracy, mean, and standard deviation, and compared against baseline BO to validate performance 

gains. Subsequently, CNN architectures are constructed using the optimized hyperparameters and evaluated on both datasets 

using accuracy, recall, precision, F1-score, and specificity as performance metrics. Finally, the optimized CNN models are 

compared with existing state-of-the-art methods, demonstrating that the proposed EBO framework achieves superior 

performance and offers a robust strategy for MRI brain tumor detection and classification. 

(202

2) 

Detection 

from Chest 

X-rays 

Layers; Number of 

Dense Nodes; Learning 

Rate; Activation 

Function 

COVIDXception-Net, 

an enhanced Xception-

based CNN tuned using 

Bayesian Optimization; 

Achieved Accuracy: 

94%, Precision: 95%, 

Recall: 94%, 

Specificity: 99.7%, F1-

score: 94%, MCC: 

0.992 

hyperparameters were 

optimized  

- Search space was not 

well-defined or extensive  

- Hyperparameter 

ranges were not 

described, limiting 

reproducibility and 

generalizability 

[96] 

(202

2) 

COVID-19 

Detection 

from Chest 

X-rays 

Not 

explicit

ly 

stated  

Not 

specifi

ed 

Initial Learning Rate 

[0.001 – 1]; SGD 

Momentum [0.8 – 1]; 

Depth of Network [15]; 

L2 Regularization [1e-

10 – 0.001] 

Suggested a CNN 

model optimized with 

Bayesian optimization 

for COVID-19, Normal, 

and Pneumonia X-ray 

classification; Bayesian 

optimization 

outperformed three 

ablation scenarios with 

96% accuracy 

- Surrogate model and 

acquisition function not 

described  

- Limited detail on 

architectural 

components beyond 

depth  

- Lacked broader search 

over hyperparameter 

types (e.g., activation, 

batch size) 

[97] 

(202

2) 

COVID-19 

Diagnosis 

from Chest 

CT Scans 

Not 

explicit

ly 

stated  

Not 

specifi

ed 

Initial Learning Rate 

[1e-2 – 1]; Momentum 

[0.8 – 0.98]; L2 

Regularization [1e-10 – 

1e-2] 

BO was used to 

optimize 

hyperparameters for 

MobileNetV2 and 

ResNet-50; Achieved 

99.37% accuracy, 

99.36% recall, and 

99.37% F1-score on 

mixed international 

datasets 

- Surrogate model and 

acquisition function 

were not described  

- Hyperparameter 

search was limited to 

only three optimizer 

parameters  

- No architectural tuning 

of DNN models (e.g., 

layer configuration, 

activation) 
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Fig. 1. Workflow of the Proposed Methodology of Enhanced Bayesian Optimization Method (EBO). 

 

1.3. Dataset Description 

This study employs the publicly available datasets on Kaggle. The first dataset (dataset_1) [98] "Brain Tumor Detection" was 

made available by Ahmed Hamada on Kaggle. The dataset_1 consists of a total of 3,000 MRI images, evenly distributed across 

two binary classes: 1,500 images labeled "Yes" (demonstrating the existence of a tumor) and 1,500 images labeled "No" 

(demonstrating the absence of a tumor). The second dataset (dataset_2) [99] “Brain Tumor Image Dataset” consists of 3064 T1-

weighted contrast-enhanced images from 233 patients with three kinds of brain tumor: meningioma (708 slices), glioma (1426 

slices), and pituitary tumor (930 slices). These files were converted by “Deniz Kavi” from the “mat” file format to the ".png" 

format. Every image is resized and normalized to a standard dimension of 224 × 224 × 3, consistent with the input requirements 

of deep CNNs and common practices in medical imaging studies. The normalization ensures consistency in feature representation 

and computational efficiency during training. Following established conventions in the literature for dataset partitioning [100, 

101], the dataset is separated at random into 80% training, 10% validation, and 10% testing subsets, ensuring class balance in 

each split. This stratified division supports reliable model evaluation and mitigates the risk of data leakage or overfitting. The 

dataset offers sufficient variability in tumor size, location, and intensity, making it suitable for training deep learning models 

aimed at brain tumor detection in real-world clinical environments. 

 

1.4. Objective Function 

The principal objective of the proposed BO algorithm is to identify the ideal hyperparameter configuration 𝑥∗ ∈ 𝑋 that optimizes 

the performance of a CNN on a given validation dataset. Specifically, the goal is to maximize the validation accuracy 𝑦 =
𝐴𝑐𝑐𝑣𝑎𝑙(𝑥) obtained after training the CNN using a candidate configuration 𝑥. Formally, the objective function can be expressed 

as: 

𝑥∗ = arg 𝑚𝑎𝑥𝑥∈𝑋 𝐴𝑐𝑐𝑣𝑎𝑙(𝑥) 

In which, 𝑋 denotes the hyperparameter search space, 𝐴𝑐𝑐𝑣𝑎𝑙(𝑥) is the validation accuracy obtained using the configuration 𝑥, 

and 𝑥∗ is the hyperparameter configuration yielding the highest validation accuracy. 
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1.5. Search Space 

The hyperparameter search space designed for optimizing the CNN is high-dimensional, hybrid, and with a hierarchical structure. 

Table 2 provides an overview of the hyperparameters considered, their possible values, categories, data types, parameter types, 

and their roles within the overall architecture. The space includes ten key hyperparameters spanning architectural design (e.g., 

number of convolutional blocks, filters, filter sizes), regularization methods (e.g., dropout rate, batch normalization), activation 

functions, optimization strategies (e.g., learning rate, optimizer), and training configurations (e.g., batch size).  

 

Each convolutional block is treated as a structural unit and is composed of a combination of filters, filter sizes, dropout layers, 

activation functions, pooling types, and optionally batch normalization. This hierarchical organization adds a layer of conditional 

dependency among hyperparameters, where multiple parameters jointly define the structure and function of a single 

convolutional block. This characteristic introduces a nested search structure, which is a typical hallmark of hierarchical spaces, 

where the effectiveness of one hyperparameter (e.g., activation function) is contextually dependent on the values of others (e.g., 

filter size or pooling type). 

 

Furthermore, the search space is hybrid in nature, comprising categorical (e.g., activation functions, optimizers), discrete (e.g., 

number of convolutional blocks, filters, batch sizes), and continuous parameters (e.g., learning rate, dropout rate). Such diversity 

in data types increases the complexity of the search and necessitates a robust optimization strategy. The combination of high 

dimensionality, heterogeneity in parameter types, and hierarchical organization poses a non-trivial challenge for optimization, 

reinforcing the suitability of BO using BCNN with a hybrid acquisition function as proposed in this study. 

 

Table 2 Structured and Hybrid Search Space of CNN Hyperparameters for Optimization. 

Hyperparameter Possible Values Hyperpara

meter 

Category 

Data Type Parameter 

Type 

Search Space 

Role 

Number of Conv 

Blocks 

[2, 3, 4, 5] Architecture Integer Discrete Top-level / 

Structural 

Filters per Block [32, 64, 128, 256] Architecture Integer Discrete Nested in Conv 

Blocks 

Filter Size [(2,2), (3,3)] Architecture Tuple (int, int) Categorical Nested in Conv 

Blocks 

Dropout Rate [0.2, 0.3, 0.4] Regularizati

on 

Float Discrete Nested in Conv 

Blocks 

Activation 

Function 

["relu", "leakyrelu", 

"prelu", "swish", 

hard_swish.] 

Architecture String Categorical Nested in Conv 

Blocks 

Pooling Type ["maxpooling", 

"average_pooling"] 

Architecture String Categorical Nested in Conv 

Blocks 

Batch 

Normalization 

["yes", "no"] Regularizati

on  

String 

(Boolean) 

Categorical Nested in Conv 

Blocks 

Learning Rate [1e-3, 1e-2] Optimizatio

n 

Float Continuous Global 

Optimizer ["SGD", "RMSprop", 

"Adam", "Adadelta" 

"Nadam"] 

Optimizatio

n 

String Categorical Global 

Batch Size [8, 16, 32] Training Integer Discrete Global 

1.6. Enhanced BO Algorithm 

To address the challenges of achieving optimal hyperparameter tuning in CNNs, particularly for brain tumor classification tasks, 

we propose an Enhanced BO framework. This enhancement integrates a powerful surrogate model with a hybrid acquisition 

strategy to better navigate the trade-off between exploration and exploitation. The objective is to improve the quality of suggested 

hyperparameter configurations by leveraging both uncertainty quantification and expected performance gains in a more balanced 

manner. 

 

To successfully balance the exploration versus exploitation trade-off during hyperparameter optimization, we introduce hybrid 

acquisition functions that combine ES and KG. This formulation is specifically designed to complement the strengths of the best 

surrogate model. ES chooses the point that maximally reduces the uncertainty (entropy) regarding the position of the global 

optimum. It chooses the point 𝑥 that maximally reduces the uncertainty about where the minimum lies, not necessarily where the 

minimum value is expected to be (sec. 2.1.2). Hence, ES is designed to explore uncertain regions. Where KG chooses the point 

𝑥 where the expected improvement in the maximum utility (e.g., accuracy) after sampling is the highest (sec. 2.1.2). It evaluates 

how much better we expect the best predicted value to be after sampling at 𝑥. Thus, KG is designed to exploit promising areas of 

the search space. Motivated by this observation, we combine both in a weighted formulation: 

(𝐸𝑆 + 𝐾𝐺)𝑥 = (1 − ) ∙ 𝐾𝐺(𝑥) +   ∙ 𝐸𝑆(𝑥) 

Where  ∈ [0,1] dynamically controls the trade-off. To implement this dynamic balance, we utilize a two-phase search schedule. 

During the first half of the trials, we set  = 1 for full exploration (ES), and in the second half,  = 0 for full exploitation (KG). 

The hybrid score at each trial is computed and used to guide the selection of new hyperparameters.  Hence, the combination of 

ES and KG enables a principled and effective trade-off between global search and local refinement, especially suitable for high-

http://www.verjournal.com/


 
VASCULAR & ENDOVASCULAR REVIEW 

www.VERjournal.com 

 

 

An Enhanced Bayesian Optimization Method for Tuning of Hybrid and High-dimensional Hyperparameters of CNNs in Brain 
Tumor Detection and Classification 

111 

 

dimensional CNN hyperparameter spaces. Algorithm 1shows the implementation of the proposed EBO. 

 

Algorithm 1: Proposed EBO 

Input:  

CNN training dataset 𝑫𝒕𝒓𝒂𝒊𝒏, 𝑫𝒗𝒂𝒍: 𝑫 = {(𝒙𝒊, 𝒚𝒊)};   

Search space of hyperparameters: 𝑿;   
Surrogate model: Best Model (in sec 4.1);   

Acquisition function: Hybrid of ES and KG; 

Acquisition parameters: , ∈; 

Number of trials: 𝑵; 

MC Samples: 𝑻;  

Output:  

Optimal hyperparameter configuration 𝒙∗ 

Validation accuracy 𝒚∗ 

  

1. Initialize trial count 𝒕 = 𝟎   

2. Initialize dataset 𝑫 = ∅ 

3. For each trial i= 𝟏 𝒕𝒐 𝑵: do 

4.    Sample a candidate hyperparameter configuration  𝒙𝒊 ∈ 𝑿  

5.    Train the surrogate model on training data using 𝒙𝒊 

6.    For each  𝒕 = 𝟏 𝒕𝒐 𝑻:  

7.       Forward pass: compute 𝒇(𝒙∗; 𝒘(𝒕)) 

8.    End for     

9.    Estimate predictive mean and uncertainty: 

10.       𝝁(𝒙𝒊)  
𝟏

𝑻
∑ 𝒇(𝑻

𝒕=𝟏 𝒙𝒊; 𝒘(𝒕)),       

11.      𝝈𝟐(𝒙𝒊)  
𝟏

𝑻
∑ 𝒇(𝒙𝒊; 𝒘(𝒕))𝟐 −𝑻

𝒕=𝟏 𝝁(𝒙𝒊)
𝟐 

12.     Set  dynamically:  

13.      If 𝒊 <
𝑵

𝟐
:  = 𝟏. 𝟎 (exploration phase) 

14.         Else:  = 𝟎. 𝟎  (exploitation phase)  

15.      End if 

16.    Compute acquisition score: 

17.      ES: 𝑬𝑺(𝒙𝒊) = − 𝐥𝐨𝐠(𝝈(𝒙𝒊)+∈) 

18.     KG: 𝑲𝑮(𝒙𝒊) = 𝝁(𝒙𝒊) + 𝜸 ∙ 𝝈(𝒙𝒊)   

19.    Hybrid: 

20.    (𝑬𝑺 + 𝑲𝑮)𝒙 = (𝟏 − ) ∙ 𝑲𝑮(𝒙) +   ∙ 𝑬𝑺(𝒙) 

21.    Evaluate the model using 𝒙𝒊, get validation accuracy 

22. End For 

23. Return 𝒙∗ and 𝒚∗ 

 

RESULTS AND DISCUSSIONS 
1.7. Performance Analysis of Novel BCNN Surrogate Model with Acquisition Functions 

To identify the most effective surrogate model and the two best acquisition functions with the best surrogate model, for CNN 

hyperparameter optimization, we evaluated four surrogate models: GP, RF, BNN, and BCNN, in combination with five 

commonly used acquisition functions: EI, PI, ES, KG, and UCB. Each surrogate and acquisition function combination was run 

for 30 optimization trials to maximize the validation accuracy of CNN models. All experiments were implemented using Python 

on Google Colab with GPU support. The evaluation was carried out on two datasets: dataset_1, a binary classification dataset 

for tumor detection (tumor versus no tumor), and dataset_2, a multi-class dataset for tumor classification (glioma, meningioma, 

pituitary). This comprehensive setup enabled a fair comparison across different configurations, allowing us to determine the 

surrogate model that consistently yields high-performing CNN architectures for both classification tasks.   

 

1.7.1. Selection of Optimal Surrogate Model  

On dataset_1, the performance of surrogate models varies across acquisition functions shown in Fig. 2. The GP performs strongly 

under EI and UCB, reaching close to 0.8 accuracy early, but its performance stabilizes at a lower level compared to BCNN in 

later trials. RF shows steady yet limited improvement, generally stabilizing around 0.72 - 0.75 across acquisitions, with slightly 

better outcomes under KG and PI. The BNN performs moderately well, achieving accuracies between 0.75 and 0.78 with EI, 

ES, and UCB, though it remains less consistent and weaker than BCNN. In contrast, the Bayesian CNN (BCNN) outperforms 

all other surrogates, achieving ~0.81 with EI, ~0.82 with UCB and ES, and peaking at ~0.85 with KG, which demonstrates its 

superiority in balancing exploration and exploitation. 

 

Table 3 also shows the comparative performance of different surrogate models with various acquisition functions using dataset_1 

and computes the validation accuracy, mean, and standard deviation. Across all surrogate models, the BCNN consistently 

demonstrated superior performance in terms of both mean validation accuracy and overall reliability. Specifically, BCNN paired 

with ES and KG achieved the highest validation accuracy of 0.8750, with corresponding mean accuracies of 0.5940 and 0.5723, 

http://www.verjournal.com/


 
VASCULAR & ENDOVASCULAR REVIEW 

www.VERjournal.com 

 

 

An Enhanced Bayesian Optimization Method for Tuning of Hybrid and High-dimensional Hyperparameters of CNNs in Brain 
Tumor Detection and Classification 

112 

 

respectively. These results highlight the strong capability of BCNN in modeling the complex, high-dimensional search space of 

CNN hyperparameters, benefiting particularly from acquisition strategies that balance exploration and exploitation. 

 
Fig. 2. Performance of Surrogate Models (GP, RF, BNN, BCNN) with Acquisition Functions (EI, PI, ES, KG, UCB) in 

CNN Hyperparameter Optimization using binary dataset_1 

 

Table 3 Performance Comparison of Surrogate Models with various Acquisition Functions on Validation Accuracy, 

Mean, and Standard Deviation for Dataset_1 

 GP RF BNN BCNN 

 Val 

Acc. 

Mean Std. Val 

Acc. 

Mean Std. Val 

Acc. 

Mean Std. Val 

Acc. 

Mean Std. 

EI 0.7875 0.542 0.100 0.7750 0.580 0.101 0.8000 0.543 0.092 0.8125 0.567 0.120 

ES 0.8500 0.554 0.118 0.7188 0.550 0.088 0.8000 0.559 0.106 0.8750 0.594 0.116 

UCB 0.7250 0.547 0.084 0.7625 0.582 0.092 0.8250 0.558 0.112 0.8250 0.568 0.099 

KG 0.7875 0.555 0.800 0.8000 0.569 0.10 0.8125 0.542 0.110 0.875 0.572 0.109 

PI 0.7875 0.567 0.762 0.7625 0.529 0.88 0.7750 0.562 0.107 0.7875 0.519 0.089 

The comparative results of surrogate models on dataset_2 across different acquisition functions are illustrated in Fig.3. Each plot 

represents the progression of the best validation accuracy achieved so far as the number of trials increases. Among the surrogate 

models, the BCNN consistently outperforms GP, RF, and BNN. Under the EI acquisition, GP and RF show gradual improvement 

but plateau around 0.6 - 0.7, while BNN achieves close to 0.75. In contrast, BCNN quickly surpasses 0.8 and stabilizes, 

highlighting its superior learning efficiency. A similar trend is observed with the UCB, where BCNN achieves the highest 

accuracy (~0.86), while the other surrogates remain below 0.72. When the ES acquisition is used, GP progresses slowly and 

stabilizes below 0.7, RF performs better, reaching around 0.75, and BNN achieves 0.75. BCNN, however, stands out by reaching 

nearly 0.88, demonstrating its robustness. The KG function shows competitive performance by RF (~0.77) and BNN (~0.75), 

but again BCNN dominates with an accuracy close to 0.88. With the PI, GP shows limited improvement (below 0.65), RF reaches 

~0.7, BNN stabilizes around 0.67, while BCNN once again leads with ~0.81. Across all acquisition functions, BCNN consistently 

shows faster convergence and higher accuracy, indicating its effectiveness as a surrogate model for hyperparameter optimization 

on dataset_2. 

 

The tabulated results in Table 4 further reinforce the observations from the graphs. BCNN records the highest validation 

accuracies across all acquisition functions, with values of 0.8098 for EI, 0.8721 for ES, 0.8623 for UCB, 0.8787 for KG, and 

0.8098 for PI. This indicates that BCNN not only converges faster but also maintains superior predictive accuracy. BNN performs 

moderately, achieving up to 0.75, though with higher variability in standard deviation. RF demonstrates competitive results 

under the KG acquisition (0.7749) but still lags behind BCNN. GP, on the other hand, shows the weakest performance overall, 

failing to exceed 0.71 even with UCB. Importantly, BCNN also shows relatively lower standard deviations across acquisitions, 

suggesting that its performance is both accurate and stable. 
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Fig. 3. Performance of Surrogate Models (GP, RF, BNN, BCNN) with Acquisition Functions (EI, PI, ES, KG, UCB) in 

CNN Hyperparameter Optimization using binary dataset_2 

 

Table 4 Performance Comparison of Surrogate Models with various Acquisition Functions on Validation Accuracy, 

Mean, and Standard Deviation for dataset_2 

 GP RF BNN BCNN 

 Val 

Acc. 

Mean Std. Val 

Acc. 

Mean Std. Val 

Acc. 

Mean Std. Val 

Acc. 

Mean Std. 

EI 0.6750 0.348 0.113 0.625 0.386 0.108 0.75 0.442 0.147 0.8098 0.597 0.152 

ES 0.6750 0.391 0.111 0.6625 0.402 0.142 0.75 0.449 0.149 0.8721 0.615 0.115 

UCB 0.7124 0..440 0.129 0.6652 0.389 0.114 06062 0.412 0.110 0.8623 0.618 0.163 

KG 0.6499 0.378 0.121 0.7749 0.427 0.161 0.75 0.394 0.134 0.8787 0.633 0.148 

PI 0.6374 0.415 0.120 0.6999 0.405 0.126 0.6750 0.436 0.143 0.8098 0.624 0.147 

Finding: The comparative analysis of surrogate models on both dataset-1 and dataset_2 indicates that the BCNN is the most 

effective and reliable surrogate for CNN hyperparameter optimization. The GP, while demonstrating strong initial exploration 

by achieving higher accuracy in the early stages, failed to maintain its performance during later trials, thereby limiting its overall 

reliability. RF provided stable outcomes, but its improvements remained restricted, converging at comparatively lower accuracy 

levels, which reduces its suitability for modeling the complexity of CNN hyperparameter spaces. The BNN offered moderate 

performance and, in certain instances, showed competitive results, but its relatively high variability and lack of consistency 

diminished its robustness across different scenarios. In contrast, BCNN consistently delivered superior validation accuracy 

across acquisition strategies and datasets, exhibiting not only faster convergence but also lower variability, which highlights its 

ability to capture intricate patterns within high-dimensional search spaces. These findings indicate that BCNN is more capable 

of achieving accurate and stable performance compared to the other surrogates, thereby establishing it as the most reliable and 

powerful surrogate model for guiding BO in CNN hyperparameter tuning.  

 

1.7.2. Selection of acquisition functions with Optimal Surrogate model (BCNN)  

The comparative analysis of acquisition functions for BO in tuning a BCNN demonstrates notable performance differences 

across methods on dataset_1 (Fig. 4). Among the five acquisition functions evaluated, EI, ES, UCB, KG, and PI, ES and KG 

were found to be the most effective. Both functions achieved the maximum validation accuracy (0.8750), with ES exhibiting the 

highest mean accuracy (0.594) and moderate variability (standard deviation = 0.116), indicating reliable and consistent 

performance. KG followed closely, maintaining competitive stability with a standard deviation of 0.109. In contrast, EI, despite 

achieving a reasonable accuracy of 0.8125, demonstrated the highest variability (standard deviation = 0.120), suggesting less 

predictable behavior across iterations. PI, although exhibiting the lowest variability (standard deviation = 0.089), recorded the 

lowest validation accuracy (0.7875), reflecting a trade-off between stability and effectiveness. UCB achieved moderate 

performance, striking a balance between accuracy and consistency but falling short compared to ES and KG. These findings 
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highlight ES as the most robust acquisition strategy for BCNN-based hyperparameter optimization, attributable to its ability to 

balance exploration and exploitation effectively. The superior performance of ES and KG may be explained by their capability 

to incorporate uncertainty information in a principled manner, guiding the optimization process toward regions with higher 

potential for improvement while maintaining consistency. Conversely, EI and PI, being more myopic in nature, fail to leverage 

uncertainty efficiently, leading to suboptimal and unstable performance. This suggests that advanced acquisition functions 

prioritizing information gain, such as ES and KG, are more suitable for complex, high-dimensional optimization tasks like CNN 

hyperparameter tuning. 

 

The bar graph in Fig. 5 on dataset_2 illustrates the validation accuracy of a BCNN optimized using different acquisition functions 

under the Bayesian Optimization framework. The acquisition functions compared include EI, ES, UCB, KG, and PI. Each bar 

represents the validation accuracy for a given acquisition function, while error bars indicate the standard deviation. Additionally, 

the mean accuracy of each acquisition function is represented as connected points forming a trend line to show overall 

performance consistency. From the analysis, the KG function demonstrated the highest validation accuracy of 0.8787, with a 

mean accuracy of 0.633 and a standard deviation of 0.148, demonstrating strong and relatively stable performance. ES achieved 

a validation accuracy of 0.8721, with a mean of 0.615 and the lowest standard deviation (0.115), signifying the most consistent 

results among all methods. The UCB method obtained a validation accuracy of 0.8623 with a mean of 0.618; however, it 

exhibited the highest variability (standard deviation of 0.163). In contrast, EI and PI achieved comparatively lower validation 

accuracies (0.8098 each), with mean values of 0.597 (EI) and 0.624 (PI) and standard deviations of 0.152 and 0.147, respectively. 

These findings suggest that KG is the most effective acquisition function for BCNN-based hyperparameter optimization, while 

ES offers the highest consistency. EI and PI showed relatively weaker performance, indicating limited suitability for this specific 

setup. 

 

Findings: The analysis across dataset_1 and dataset_2 indicates that ES and KG are the best acquisition functions for balancing 

exploration and exploitation in BCNN-based Bayesian Optimization. KG achieved the highest validation accuracy (0.8787 on 

dataset_2 and 0.8750 on dataset_1) with strong mean accuracy, while ES showed slightly lower accuracy but the lowest 

variability (std = 0.115), making it the most consistent method. Both functions effectively utilize uncertainty information, 

enabling robust optimization compared to EI, PI, and UCB, which showed lower stability or accuracy. Thus, KG is preferred for 

maximum accuracy, while ES is ideal for consistent performance. 

 

 
Fig. 4. Validation Accuracy with Error Bars and Mean Trend for BCNN-based Surrogate model with Acquisition 

functions (EI, ES, UCB, KG, and PI) on dataset_1. 
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c  

Fig. 5. Validation Accuracy with Error Bars and Mean Trend for BCNN-based Surrogate model with Acquisition 

functions (EI, ES, UCB, KG, and PI) on dataset_2. 

 

1.8. Evaluation of Proposed EBO (BCNN_ES+KG)  

Fig. 6 presents the optimization history of BCNN using various acquisition functions, including EI, UCB, ES, KG, PI, and the 

proposed hybrid ES+KG approach on dataset_1. Among the individual strategies, ES achieved the highest mean accuracy 

(0.594), followed by KG (0.572), while PI recorded the lowest (0.519). EI and UCB demonstrated moderate performance with 

mean accuracies of 0.566 and 0.568, respectively. In contrast, the proposed BCNN_ES+KG hybrid approach significantly 

outperformed all others, achieving the highest mean accuracy (0.648) and demonstrating faster convergence and better stability 

across trials. This superior performance can be attributed to the combined advantages of ES for exploration and KG for informed 

exploitation, enabling more effective hyperparameter optimization for BCNN. 

 

Fig. 7 presents the optimization history of the BCNN using six acquisition strategies: EI, UCB, ES, KG, PI, and the proposed 

ES+KG hybrid on dataset_2. Each subplot shows the progression of validation accuracy across 30 trials, with the blue line 

representing objective values, the red dashed line indicating the best-so-far accuracy, and the green dashed line showing the 

mean accuracy. Among the individual methods, KG achieved the highest mean accuracy (0.633), followed by PI (0.624) and ES 

(0.615), whereas EI recorded the lowest performance (0.597). The ES+KG hybrid approach demonstrated a clear advantage, 

attaining the highest mean accuracy (0.746) with relatively stable convergence, outperforming all other strategies. This superior 

performance can be attributed to the combined strengths of ES in promoting exploration and KG in leveraging knowledge-based 

exploitation, leading to more efficient and robust hyperparameter optimization. 

 
Fig. 6. Comparison of optimization history of proposed BCNN_ES+KG method with BCNN and individual acquisition 

functions (EI, UCB, ES, PI, and KG) on dataset_1 
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Fig. 7. Comparison of optimization history of proposed BCNN_ES+KG method with BCNN surrogate model and 

individual acquisition functions (EI, UCB, ES, PI, and KG) on dataset_2 

 

The comparative analysis, as depicted in Table 5, of acquisition functions for BCNN-based BO reveals a clear performance 

advantage for the proposed hybrid ES+KG approach across both datasets. For dataset_1, the proposed method achieved the 

highest validation accuracy (0.970) and mean value (0.834), with a low standard deviation (0.126), indicating both superior 

predictive performance and consistency. Similarly, in Dataset D2, ES+KG recorded the best validation accuracy (0.9213) and 

mean (0.700) while maintaining competitive stability (standard deviation 0.164). In contrast, individual acquisition functions 

such as EI, UCB, ES, KG, and PI demonstrated moderate improvements, but none matched the overall effectiveness of the hybrid 

strategy. These findings confirm that integrating ES with KG achieves an improved balanced trade-off between exploration and 

exploitation, resulting in improved convergence and robustness for hyperparameter optimization in BCNN-based models. 

 

Table 5 Comparative analysis of different acquisition functions (EI, UCB, ES, KG, PI, and the proposed ES+KG) used 

with a BCNN surrogate model for hyperparameter optimization across two datasets: dataset_1 and dataset_2. 

 Dataset_1 Dataset_2 

 Val Acc Mean Standard 

Deviation 

Val 

Acc 

Mean Standard 

Deviation 

BCNN_EI 0.8125 0.5665 0.1201 0.8098 0.597 0.152 

BCNN_UCB 0.8250 0.5683 0.0999 0.8623 0.618 0.163 

BCNN_ES 0.8750 0.5940 0.1164 0.8721 0.615 0.115 

BCNN_KG 0.8750 0.5723 0.1089 0.8787 0.633 0.148 

BCNN_PI 0.7875 0.5190 0.8930 0.8098 0.624 0.147 

Proposed 

BCNN_ES+KG 

0.970 0.834 0.126 0.9213 0.700 0.164 

 

Across both datasets, the proposed ES+KG hybrid consistently outperforms individual acquisition functions, delivering the 

highest mean and validation accuracies with faster, more stable convergence. By jointly leveraging ES-driven exploration and 
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KG’s informed exploitation, the method achieves a superior balance that yields robust and reliable hyperparameter optimization 

for BCNN. 

 

1.9. Implementation of CNNs with Optimized Hyperparameters of Dataset_1 and Dataset_2 

This section presents the implementation of CNNs using the optimized hyperparameters obtained from the proposed EBO 

framework for both datasets, dataset_1 (binary classification) and dataset_2 (multi-class classification). The optimized 

hyperparameters include architectural parameters (such as the number of convolutional layers, filter sizes, kernel dimensions, 

and dropout rates) and training parameters (such as learning rate, batch size, and optimizer type). For each dataset, the CNN 

model is constructed based on the optimized architectural hyperparameters, followed by training and evaluation using the 

corresponding optimized training hyperparameters. The evaluation of the optimized models is conducted using standard 

performance metrics, including accuracy, precision, recall, F1-score, and specificity, which together provide a comprehensive 

assessment of classification performance. Accuracy represents the percentage of total samples that are correctly classified, while 

precision evaluates the ratio of true positive predictions to all positive predictions, reflecting the model’s ability to minimize 

false positives. Recall (or sensitivity) measures the proportion of true positives accurately detected, which is particularly 

important in medical diagnosis to avoid missed cases. F1-score is the harmonic mean of precision and recall, balancing both 

metrics into a single measure of performance. Finally, specificity assesses the ability of the model to accurately classify 

negatives, thereby decreasing the rate of false positives. Subsection 4.3.1 details the optimized_CNN1 implementation for 

dataset_1, while Subsection 4.3.2 presents the implementation optimized_CNN2 for dataset_2. 

 

1.9.1. Construction and Evaluation of Optimized_CNN1 Model for Dataset_1 

The optimized_CNN1 for dataset_1 was constructed using the best hyperparameters obtained through the EBO framework. 

These are “number_of_conv_blocks: 2; learning_rate: 0.003920476718634066, optimizer: Nadam; batch_size: 16; 

filters_block_1: 32; filter_size_block_1: (2, 2); dropout_rate_block_1: 0.4; activation_block_1: prelu;  pooling_layers_block_1: 

maxpooling; batch_normalization_block_1: yes; filters_block_2: 32; filter_size_block_2: (3, 3); dropout_rate_block_2: 0.3; 

activation_block_2: relu; pooling_layers_block_2: average_pooling; batch_normalization_block_2: no”. These optimized 

hyperparameters aim to optimize the trade-off between network depth, regularization, and computational performance for binary 

classification of brain MRI images. Fig. 8 presents a structured diagram of the optimized CNN architecture, offering a visual 

depiction of the model’s design by using these optimized hyperparameters. The dataset, consisting of 3,000 MRI images of brain 

tumor detection (Tumorous & Non-tumorous), was resized to 224 × 224 pixels and divided into 80% training, 10% validation, 

and 10% testing sets. 

  
Fig. 8. Architecture of Optimized_CNN1 using optimized hyperparameters for the detection of MRI brain tumor 

(dataset_1) 

 
Fig. 9. Confusion matrix and performance metrics of Optimized_CNN1 model on dataset_1 
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The performance analysis of the optimized CNN model for dataset_1, trained with hyperparameters (learning rate: 

0.003920476718634066, optimizer: Nadam, batch size: 16, epochs: 30), demonstrates highly effective classification capability.  

The confusion matrix in Fig. 9 indicates an almost perfect classification, with 148 true negatives, 146 true positives, and only 2 

false positives and 4 false negatives. This indicates that the model preserves strong predictive accuracy for both classes. The bar 

chart (Fig. 9) of test metrics provides additional insights. The testing loss is 0.094, which signifies minimal error and suggests 

that the model has achieved strong convergence without significant overfitting. The accuracy is 98%, reflecting highly reliable 

overall performance on unseen test data. Moreover, precision (98.6%) indicates that false positives are extremely low, while 

recall (97.3%) confirms the model’s strong ability to detect actual positive cases. The F1-score (98%) shows an optimal balance 

between precision and recall, enabling the model to be robust for real-world deployment. Additionally, specificity (98.7%) 

highlights the model’s ability to correctly detect negative cases, reducing the likelihood of misclassifying normal or non-tumor 

images as tumors. 

 

These results collectively confirm that the chosen optimization strategy, including the Nadam optimizer and adaptive learning 

rate, significantly enhances convergence speed and generalization ability. The combination of optimized hyperparameters, 

regularization techniques (dropout and batch normalization), and effective architecture design has contributed to achieving high 

classification performance across all evaluation metrics. This level of accuracy and consistency is crucial in medical imaging 

applications, where diagnostic reliability is of utmost importance. 

 

1.9.2. Construction and Evaluation of Optimized_CNN2 Model for Dataset_2 

The best hyperparameters for optimized_CNN2 model for dataset_2 are: learning_rate: 0.009816636240589462; optimizer: 

SGD; batch_size: 8; number_of_conv_blocks: 3; filters_block_1: 64 filter_size_block_1: (3, 3) dropout_rate_block_1: 0.3 

activation_block_1: leakyrelu pooling_layers_block_1: maxpooling batch_normalization_block_1: yes filters_block_2: 64 

filter_size_block_2: (2, 2) dropout_rate_block_2: 0.3 activation_block_2: prelu pooling_layers_block_2: maxpooling 

batch_normalization_block_2: yes filters_block_3: 32 filter_size_block_3: (3, 3) dropout_rate_block_3: 0.2 activation_block_3: 

leakyrelu pooling_layers_block_3: average_pooling batch_normalization_block_3: no . The optimized CNN model for Dataset 

D2 by using the mentioned optimized hyperparameters is designed for effective brain tumor classification into three classes: 

Meningioma, Glioma, and Pituitary, as shown in Fig. 10. The dataset, consisting of 3,064 MRI images, was resized to 224 × 224 

pixels and divided into 80% training, 10% validation, and 10% testing sets.  

 

The evaluation of the optimized_CNN2 model on dataset_2 is shown in Fig. 11, trained with the hyperparameters (learning rate: 

0.009816636240589462, optimizer: SGD, batch size: 8, and 30 epochs), indicates strong performance in multi-class brain tumor 

classification (Meningioma, Glioma, Pituitary). The confusion matrix shows that the model correctly classified most instances 

across the three classes, with minor misclassifications. Specifically, the first class achieved 68 correct predictions with only 4 

misclassifications, the second class had 134 correct predictions with 10 misclassifications, and the third class was classified with 

high accuracy, having 93 correct predictions and no errors for other classes. This distribution demonstrates that the model 

generalizes well across all classes without significant bias toward any particular category. The test metrics further support the 

model’s effectiveness. The loss value of 0.199 indicates efficient convergence with minimal error. The overall accuracy of 95.5% 

reflects reliable classification across all tumor types. Precision (94.6%) shows that the model maintains a low false-positive rate, 

while recall (95.8%) suggests strong sensitivity in identifying actual positive cases. The F1-score of 95.1% confirms a well-

balanced trade-off between precision and recall, which is critical for medical diagnostic applications. Furthermore, the specificity 

(97.7%) indicates excellent performance in correctly identifying negative instances, reducing the likelihood of incorrect tumor 

detection. 

 
Fig. 10. Architecture of Optimized_CNN2 using optimized hyperparameters for the detection of MRI brain tumor 

(dataset_2) 
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Fig. 11. Confusion matrix and performance metrics of Optimized_CNN2 model on dataset_2 

 

1.10. Comparison Analysis with Existing Methods 

The comparative validation of the proposed optimized CNNs in comparison with existing state-of-the-art methods in Table 6 

highlights both performance and methodological distinctions. Some prior works, such as [102] and [103], reported very high 

accuracies above 99% by employing exhaustive GS across extremely large search spaces, ranging from 716,800 to 829,440 

configurations with dimensionality between 5 and 9. While such exhaustive strategies ensured strong performance, they required 

substantial computational resources, making them less practical for real-world clinical deployment. Likewise, studies such as 

[85] and [84] applied Bayesian optimization over hybrid infinite search spaces, which provided flexibility but suffered from 

poorly defined configuration boundaries and heavy computational demand. In contrast, the proposed models, trained on Kaggle-

based datasets, achieved competitive and balanced results. On the Br35H dataset (dataset_1), the model reached 98.00% 

accuracy, 97.33% recall, 98.65% precision, and 97.99% F1-score, while on the custom CNN dataset, it achieved 95.79% 

accuracy, 95.81% recall, 95.11% precision, and 95.44% F1-score. Although slightly lower in accuracy than the top-performing 

existing approaches, the proposed models exhibit superior balance in recall and F1-score, metrics that are clinically more relevant 

as they directly reduce the risk of false negatives. 

 

A major strength of the proposed framework lies in its efficient and structured hyperparameter optimization strategy. Unlike 

previous works that relied on excessively large finite search spaces or undefined infinite ones, the proposed method explores a 

10-dimensional hybrid search space that integrates both discrete design parameters and a continuous learning rate. This balance 

ensures comprehensive exploration of architectural, regularization, and optimization aspects without incurring the computational 

infeasibility of prior methods. Furthermore, many studies employing BO rely on the default GP surrogate and the EI acquisition 

function, which, while effective, may limit the diversity and adaptability of the search process. In contrast, the proposed EBO 

approach employs a BCNN surrogate in combination with ES+KG acquisition, which not only improves search efficiency but 

also introduces uncertainty quantification, enhancing interpretability and trust in medical applications. This combination of 

computational efficiency, balanced performance across metrics, and added reliability positions the proposed method as a strong 

and clinically practical alternative to existing state-of-the-art approaches. 

 

Table 6 Comparison analysis of proposed optimized CNN Models with state-of-the-art optimized CNN methods for 

MRI Brain Tumor Classification 

Refe

renc

e & 

Year 

Datas

et 

Model & 

Classes 

Search Space Dimension

ality & 

Configurati

on 

HPO 

Metho

d 

Acc 

(%) 

Reca

ll 

(%) 

PRE 

(%) 

F1_S 

(%) 

SPE 

(%) 

[85] 

2021 

Figsh

are 

(Chen

g et 

al.) 

(3064

) 

 

(Aug

mente

d) 

Custom 

CNN 

Dropout Percentages 

[0, 0.5]; Conv2D 

Filters [16, 32, 64, 

128, 256, 512]; 

Conv2D Kernel Size 

(x, x) [2, 3, 4, 5]; Max 

Pooling Size (x, x) [2, 

3, 4, 5]; Dense Filter 

[16, 32, 64, 128, 256, 

512, 1024, 2048, 

4096] 

dimensional

ity = 5  

Search-

space size = 

infinite 

(Hybrid 

Search-

space) 

Bayesi

an 

Optimi

zation 

97.3

7 

97.3

8 

97.4 97.3 98.0

2 

MEN 

(708) vs 

Glioma 

(1426) vs 

PT (930) 

[102

] 

2021 

RIDE

R 

+ 

REM

BRA

NDT, 

Custom 

CNN1 

Number of 

convolution and max 

pooling layers [1, 2, 3, 

4]; Number of FC 

layers [1, 2, 3, 4]; 

Number of filters [16, 

dimensional

ity = 9  

Search-

space size = 

716,800 

 

Grid 

Search 

99.3

3 

99.4 99.2

5 

- 99.4 

Tumor 

(1640) vs 

non-tumor 

(1350) 
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TCG

A-

LGG 

+ 

Figsh

are 

(Chen

g et 

al.) 

(11,51

0) 

Custom 

CNN2 

24, 32, 48, 64, 96, 

128]; Filter size [3, 4, 

5, 6, 7]; Activation 

function [ELU, SELU, 

ReLU, Leaky ReLU]; 

Mini-Batch Size [4, 8, 

16, 32, 64]; 

Momentum [0.80, 

0.85, 0.9, 0.95]; 

Learning Rate [0.0001, 

0.0005, 0.001, 0.005]; 

l2 Regularization 

[0.0001, 0.0005, 

0.001, 0.005] 

92.6

6 

91.8

2 

92.0

2 

- 98.0

3 

Normal 

(850) vs 

Glioma 

(950) vs 

MEN 

(700) vs 

PT (700) 

vs MTS 

(750)  

Custom 

CNN3 

98.1

4 

98.6

0 

98.3

1 

- 99.0

2 

G-II 

(1676) vs 

G-III 

(1218) vs 

G-IV 

(1676)  

[84] 

2022 

Figsh

are 

(Chen

g et 

al.) 

(3064

) 

Custom 

CNN 

Activation function 

[ReLU, ELU, 

Sigmoid, SELU, 

Tanh]; Batch size [1 to 

128]; Dropout rate [0.1 

to 0.5]; Number of 

dense nodes [32 to 

1024]; Gradient 

descent optimizer 

[Adam, Nadam, 

AdaMax, RMSProp, 

SGD] 

dimensional

ity = 5  

Search-

space size = 

infinite 

(Hybrid 

Search-

space) 

Bayesi

an 

Optimi

zation 

98.7

0 

98.6

6 

98.3

3 

98.6

6 

- 

MEN 

(708) vs 

Glioma 

(1426) vs 

PT (930) 

[83] 

2023 

Kaggl

e (S. 

Bhuva

ji) 

(3264

) 

Custom 

CNN 

Convolutional layer 

size [5, 7, 9, 11]; 

Kernel size [3x3, 5x5]; 

Filters size [min value 

=16, max value =256, 

step =16]; Dropout-

rate [0.0, 0.2, 0.3, 0.4, 

0.5, 0.6]; Optimizer 

[Adam, SGD with 

Nesterov]; Learning 

rate [0.001, 0.0001] 

dimensional

ity = 6  

Search-

space size = 

3,072 

 

Bayesi

an 

Optimi

zation 

98.0

1 

- - 98 - 

MEN 

(937) vs 

Glioma 

(926) vs 

PT (901) 

vs Normal 

(500) 

[103

] 

2024 

TCIA 

(REM

BRA

NDT) 

 

Custom 

CNN1 

Layers of maximum 

pooling and CNN [1, 

2, 3, 4]; Layers that 

are completely 

connected [1, 2, 3, 4]; 

Nnumber of flters [8, 

16, 24, 32, 48, 64, 96, 

128, 256]; Intensity of 

fltration [3, 4, 5, 6, 7]; 

Activation [ReLU, 

ELU, Leaky ReLU]; 

Size of minibatch [4, 

6, 16, 24, 32, 64]; Rate 

of change [0.78, 0.77, 

0.95, 0.96]; Rate of 

learning [0.0002, 

0.00043, 0.002, 

0.004]; R2-

regularization [0.0002, 

0.00043, 0.002, 0.004] 

dimensional

ity = 6  

Search-

space size = 

829,440 

 

Grid 

Search 

99.5

3 

- - - - 

Malignant 

(1743) vs 

Non-

malignant 

(1422) 

Custom 

CNN2 

93.8

1 

BN (910) 

vs Glioma 

(985) vs 

MEN 

(750) vs 

PT (750) 

vs MTS 

(800) 

Custom 

CNN3 

98.5

6 

G-II 

(1712) vs 

4720 (G-

III) vs G-
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IV (1712) 

Opti

mize

d 

CN

Ns 

with 

Prop

osed 

HP

O 

Kaggl

e 

datas

et 

(Br35

H) 

(3000

) 

Optimized

_CNN1 

Tumorous 

(1500) and 

non-

Tumorous 

(1500) 

Number of Conv 

Blocks: [2, 3, 4, 5]; 

Filters per Block: 

[32, 64, 128, 256]; 

Filter Size: [(2,2), 

(3,3)]; Dropout Rate: 

[0.2, 0.3, 0.4]; 

Activation Function: 

["relu", "leakyrelu", 

"prelu", "swish", 

hard_swish.]; Pooling 

Type: 

["maxpooling", 

"average_pooling"]; 

Batch Normalization: 

["yes", "no"]; 

Learning Rate: [1e-3, 

1e-2]; Optimizer: 

["SGD", 

"RMSprop", 

"Adam", 

"Adadelta", 

"Nadam"]; Batch 

Size: [8, 16, 32] 

dimensiona

lity = 10 

Search-

space size = 

infinite 

(Hybrid 

Search-

space) 

EBO: 

BCNN

_ES+K

G 

98.0

0 

97.3

3  

98.6

5 

97.9

9 

98.6

7 

Figsh

are 

(Chen

g et 

al.) 

(3064

) 

Optimized

_CNN2 

MEN 

(708) vs 

Glioma 

(1426) vs 

PT (930) 

95.7

9 

95.8

1 

95.1

1 

95.4

4 

97.7

3 

HPO: Hyperparameters Optimization, ACC: Accuracy, PRE: Precision, SPE: Specificity, F1_S: F1_Score, MEN: Meningioma, 

PT: Pituitary, MST: Metastatic   

2. Conclusion and Future Work 

This study introduced BCNN as the surrogate model in BO and proposed an Enhanced Bayesian Optimization (EBO) framework 

for optimizing the hybrid and high-dimensional hyperparameter search space of CNNs in MRI-based brain tumor detection and 

classification. The framework employed an objective function of maximizing validation accuracy (Val_Acc) and systematically 

benchmarked four surrogate models (GP, RF, BNN, and BCNN) with five acquisition functions (EI, PI, UCB, ES, and KG) 

applied across two datasets (detection and classification of brain tumors) and validated over 30 trials. Based on these evaluations, 

the Bayesian CNN combined with a novel ES+KG hybrid acquisition function, designed to balance exploration and exploitation, 

was proposed as the EBO framework. The EBO framework was executed for 30 independent trials on both datasets to obtain 

optimized hyperparameters, which were subsequently used to train two CNN architectures: optimized_CNN1 for dataset_1 

(tumor vs. non-tumor) and optimized_CNN2 for dataset_2 (glioma, meningioma, pituitary). Both optimized models consistently 

outperformed state-of-the-art approaches across multiple performance metrics, including accuracy, recall, precision, F1-score, 

and specificity. These results demonstrate not only the superior classification ability of the proposed EBO framework but also 

its robustness, reproducibility, and computational feasibility in high-dimensional hybrid search spaces. 

 

For future work, the framework can be extended to larger and more diverse datasets, multi-modal imaging, and 3D volumetric 

analysis, as well as adapted for multi-objective optimization. Exploring advanced surrogate models and real-time clinical 

integration with model compression and clinician-in-the-loop validation will further enhance its robustness and translational 

impact. 
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