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ABSTRACT

Oral cancer represents one of the major health concerns worldwide. More importantly, despite treatments with advanced
modalities, it still leads to a high level of morbidity and mortality, mainly occurring late. The present detection methods available
traditionally in this disease rely on very limited data, which brings low performance in the early stages of the disease. We proposed
an all-inclusive deep learning framework combining an advanced CNN-RNN strategy along with the transfer learning concept to
enhance robustness for oral cancer detection tasks. This involves four novel techniques. We take a pre-trained ResNet-50 model,
tuned for datasets relative to cancers that improve visual classification up to 92% from 85%. A Bi-LSTM network captures the
temporal dependencies in the sequence of data and improves the accuracy of disease progression prediction from 78% to 88%.
The third approach is multimodal fusion, which combines BERT's clinical text multimodal fusion with the features of
histopathological images from ResNet-50. This shows the fusion of textual and visual diagnostic information, achieving an overall
classification accuracy of 95%. Finally, we use cGANSs to synthesize some cancer images, handle data imbalance and boost model
robustness by 5%. This increases the accuracy in early detection as well as reduces false negative cases regarding about 10% of
all early-stage cancers. In comparison with traditional techniques, our model, which possesses the mechanism of domain-specific
transfer learning, sequential analysis of data, multimodal fusion, and data augmentation, shows better performance and may be a
new approach toward early diagnosis and treatment of oral cancers.

KEYWORDS: Oral Cancer, ResNet-50, Bi-LSTM, Multimodal Fusion, Conditional GAN

How to Cite: Keshika Jangde, Ranu Pandey., (2024) Deep Learning for Oral Cancer Detection Using ResNet-50, Bi-LSTM, and
Multimodal Fusion, Vascular and Endovascular Review, Vol.7, No.2, 88-99

INTRODUCTION

Orally developed cancer still remains an important public health issue. Orally developed cancer causes more than 300,000 new
cases and nearly 180,000 deaths every year in the world. With the advent of medical imaging and diagnostic apparatuses, detection
of oral cancer early on remains problematic, particularly if changes in the morphological structure of tissues are subtle and
unnoticed. With delayered diagnosis, both the prognosis of the patient and treatment effectiveness are reduced due to increased
mortality. Deep learning [1, 2, 3] has been found to be very promising in the application domain of medical imaging in the form
of enhancing diagnostic accuracy for various kinds of cancers. However, most of the traditional approaches so far rely upon either
limited databases or generalized models that fail to capture exactly the characteristics of morphology for oral cancers. Current
methods relying on the application of convolutional neural networks are typically built on more general images, such as Image Net,
so they are less domain-specific and have not accounted for specific relevance within far better detection of cancer. In addition
to this, these models completely forget to consider the temporal nature of disease progression that may become an important
factor while determining the severity of cancer and the probable progression in the near future. Other than this, classical CNN
models are unable to focus on multimodal data like clinical notes or patient history, which provides much diagnostic insight aside
from visual analysis. Lastly, the problem of data imbalance, especially of early-stage cancer images, presents a significant
problem in training robust models against overfitting and high false positive rates. We propose an all-inclusive deep learning
framework in this work for the detection of oral cancer, thus bringing the best from a few of the advanced methodologies while
avoiding these limitations. In our method, we next leverage domain-specific transfer learning using the ResNet-50 model pre-
trained on the cancer datasets to mine a higher-level feature in histopathological images; which further improves the visual feature
by incorporating the analysis capabilities of the sequential data of Bidirectional Long Short-Term Memory networks in an effort
to capture relationships between disease progression and time. To address the holistic diagnosis problem, we establish a new
approach, which incorporates multimodal fusion based on BERT-processed clinical text data and image-based features. This shall
integrate textual as well as visual information and achieve better accuracy in the diagnosis of cancer with proper context.
Furthermore, to counter the scarcity of data, especially regarding early oral cancer, we are utilizing cGANSs to supplement data
with realistically synthesized images which would result in better generalization of the models by balancing out the dataset.
Combining these methodologies, our framework attempts to improve the accuracy of the oral cancer detection, especially at early
stages of the disease, thus lowering the false negative rate. This corrects the deficiencies of the present diagnostic models while
laying new pathways toward using deep learning in precision cancer diagnosis and treatment.
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Motivation & Contribution

The motivation behind this research arises due to a gap found between the early detection rate of oral cancer. With the
advancement in diagnostic technologies, the sensitivity and specificity of oral cancer still remain as a critical factor in patient
survival rates and treatment efficacy sets. Although significant progress has been reported in medical imaging using deep learning,
the current approaches generally lack domain-specific relevance and fail to incorporate necessary information related to the
clinical temporal dynamics and multimodality. Most of the models developed recently are just trained on general datasets lacking
distinct morphological characteristics of oral cancer; therefore, their performance is drastically reduced in real-world clinical
applications. Moreover, in most cases such models do not account for the temporal nature of such data-for instance, such as the
cancer evolution in time. That is very important to be known when reaching the level of disease seriousness or determining the
outcomes. With the datasets being imbalanced and the lack of adequate early-stage oral cancer data, the resulting models tend to
be overfitted and characterise poor generalization capabilities. In this paper, a new deep architecture of learning is proposed
overcoming the existing limitations by the collective contribution of state-of-the-art techniques that were specifically devised to
achieve the accurate detection of oral cancers. We will incorporate at the first level a pre-trained ResNet-50 model fine-tuned to
the relevant cancer datasets, so features derived will be domain-specific and thereby optimized to be discriminative for
malignancy in tissues across the oral cavity. We introduce a Bi-LSTM network, which captures deep sequential dependency
between sequential data, such as biopsy images over a period of time, hence enhancing the ability of a predictive model to predict
the progression of the disease at hand. Third, we introduce multimodal fusion combining BERT for clinical text analysis with
CNN-extracted image features and offering holistic diagnostic approach by leveraging both visual data and textual data of cancer
risk in a more holistic fashion. We also used cGANS to synthesize images for addition to the dataset, specifically focusing on
underrepresented classes in the dataset, namely early-stage cancer, to make the model even more robust and reduce overfitting.
Overall, these contributions lead to a robust and accurate deep learning-based oral cancer detection solution which finds
improvements in terms of classification accuracy, false negative rates, and generalisability for imbalanced datasets & samples.
This work makes it to the advancement in medical image analysis and will actually provide a framework that can easily be
extended to other forms of cancer or medical conditions, thereby opening new avenues for early detection and developing
personalized treatment strategies.

LITERATURE REVIEW

The review of existing works would present a broad and all-embracing analysis regarding the recent advancements in machine
learning and deep learning methods applied to cancer detection such as oral cancer. It has observed that a scheme of machine
learning algorithms when combined with medical imaging data and clinical data has proven promising capabilities for enhanced
diagnostic accuracy, early detection, and the overall prognosis in cancer patients. For instance, Yaduvanshi et al. [1] reported that
application of a modified local texture descriptor coupled with machine learning techniques significantly improved the
classification of oral cancer than conventional methods from histopathological images. Similarly, Babu et al. [2] proposed
explainable deep learning, which can provide a transparent and interpretable model, particularly for the stages of oral cancer, of
which the importance is significantly crucial in clinical trust and adoption. These studies suggest that cancer detection not only
becomes more accurate by using machine learning models but also more interpretable in the decision-making process for health
care professionals. A number of papers investigated blood-based biomarkers and serum micro-RNAs as potential detection
methods for various types of cancers, including oral cancer. For instance, in the work of Vittone et al. [3], it has been demonstrated
how machine learning-based MCED tests can detect cancers at early stages, which are not even targeted for screening by USPSTF
recommendations. Liao et al. [4] continued working in the same area and synthesized machine learning workflows with mutation-
targeted RNA modifications to identify serum micro-RNAs, indicating their strength as strong cancer biomarkers. This was also
found to be more effective in early oral cancer risk estimation with the use of Raman cyto-spectroscopy, as pointed out by
Chaudhuri et al. [5], as it proved effective in spectral data sample analysis. More generally, Rai and Yoo [6] have provided an
all-inclusive analysis of several machine learning and deep learning models in showing the usefulness of the same across several
types of cancer, with detection of oral cancer largely being founded on the same in large-scale image classification and diagnostic
workflows. Warin and Suebnukarn [7] thoroughly reviewed deep learning applications in the diagnosis of oral cancer, where they
showed how CNNs and their variants have transformed the face of imaging-based diagnosis. The work of Somyanonthanakul et
al. [8] on fuzzy deep learning presented techniques for survival estimation in oral cancer, which is where the fusion of fuzzy logic
with deep learning provides more personalized survival predictions based on an individual patient's data samples. This
personalized approach resonates with the work done by Raj and Muneeswari [9], where they use the intelligent deep network,
optimized for OSCC detection, known as OASTDN. The values of specificity and sensitivity depict here raise the importance of
developing architectures specific to cancer that can utilize peculiarities of different cancers. Peng et al. [10] used deep learning
to classify and grade oral epithelial dysplasia in leukoplakia which is a precursor to oral cancer. Their model was very effective
in handling the imbalanced datasets that is a common issue in medical studies. The application of Al in the prediction of cancer
in the female anatomy of Ghantasala et al. [11] provided insights into generalized machine learning methods and their ability to
be applied across different types of cancers such as on oral and non-oral cancers. Sampath et al. [12] presented OralNet, which is
the deep learning fusion model of lip and tongue image data that demonstrate how the combination of logistic regression with
stochastic gradient descent might enhance oral cancer identification. More relevantly, Oztiirk et al. [13] used machine learning
models applied on MRI data to predict bone invasion of oral squamous cell carcinoma. Their approach shows how cancer may
be modeled using non-invasive imaging techniques to predict the cancer's severity; this research is similar to earlier spectroscopy-
based models developed by Kumar et al. [15], who classified mucosal lesions at stages where the patient was diagnosed with
cancer. Therefore, they articulate the important role that is being played by images in the non-invasive diagnosis process. Bhatt
and Shende [16] have presented a strategic review of the application of machine learning in cancer identification to treatment,
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which reflects how computing has moved from simplistic aiding computation to more higher-order models that do not only predict
but also recommend several follow-up lines of treatment. Uddin et al. [17] extended this application to diabetes detection,
illustrating how the best minds in machine learning are flexible enough to apply to the wider health service while Shi et al. [18]
combined pharmacokinetics with machine learning for drug-screening purposes aimed at interacting with the intestines to further
prove the cross-domain application of Al in drug therapy approaches, meant for cancer treatment. Nopour's [19] was focused on
ovarian cancer screening, so it means the risk factor analysis developed by machine learning might be used for different types of
cancers. Nimmagadda et al. [20] could demonstrate how, through machine learning, predictions about chronic kidney disease

(CKD), a very common complication in chemotherapy patients, might be enabled in process.

Table 1. Comparative Review of Existing Methods

Method Authors Year | Main Approach Findings

Modified Local | Yaduvanshi etal. [1] 2024 Modified texture | Achieved improved

Texture Descriptor + descriptors  for  image | classification accuracy for oral

ML Algorithms classification ~ combined | cancer detection using image

with ML texture analysis.

Explainable Deep | Babuetal. [2] 2024 Explainable deep learning | Provided interpretable cancer

Learning for Oral model with visual | detection results, aiding clinical

Cancer Detection interpretability decision-making with
transparent Al.

Multi-Cancer  Early | Vittone et al. [3] 2024 Machine learning applied | Successfully detected early-

Detection Blood Test to blood-based biomarkers | stage cancers lacking standard
screenings, expanding the
diagnostic scope.

RNA Modification | Liao et al. [4] 2024 Mutation-targeted ~ RNA | Identified  microRNAs as

with ML for Cancer modifications  analyzed | potent cancer detection

Detection using ML workflows biomarkers, enhancing
diagnostic precision.

Raman Cyto- | Chaudhuri et al. [5] 2023 Spectral data analysis | Improved early-stage oral

Spectroscopy + ML using ML ensembles cancer risk assessment using

Ensembles Raman  spectroscopy  and
ensemble ML techniques.

Fuzzy Deep Learning | Somyanonthanakul et al. | 2024 Fuzzy logic integrated with | Enabled personalized survival

for Survival | [8] deep learning prediction for oral cancer

Estimation patients, improving prognosis
assessments.

Intelligent Deep | Raj and Muneeswari [9] | 2024 | Optimized deep network | Enhanced  detection  and

Network (OASTDN) for oral squamous cell | classification of OSCC with

for OSCC carcinoma detection increased  specificity  and
sensitivity.

Deep Learning for | Peng etal. [10] 2024 Deep learning applied to | Achieved high accuracy in

Oral Epithelial oral leukoplakia grading grading oral epithelial

Dysplasia Grading dysplasia, helping in early
cancer intervention.

OralNet Fusion Model | Sampath et al. [12] 2024 Deep learning fusion of | Demonstrated improved oral

for Lips and Tongue lips and tongue images | cancer identification using

Images with logistic regression multi-image modalities  for
early-stage detection.
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MRI-Based ML Model | Oztiirk et al. [13] 2024 Machine learning applied | Successfully predicted bone
for Bone Invasion to MRI data for predicting | invasion in oral squamous cell
Prediction bone invasion carcinoma, aiding in clinical

treatment planning.

From table 1 it can be very well observed that Yadav and Hasija [21] analyzed the crosstalk between oral and esophageal cancers
using gene expression analysis which specifically addresses the involvement of gene-microRNA networks. That way, clinicians
could take advantage of the interpretable models of machine learning to unravel biological insights about the mechanisms of such
cancers. Likewise, Deo et al. [22] applied ensemble deep learning models in oral cancer histopathological image classification
that used empirical wavelet transforms for the improvement of feature extraction and classification accuracy. This method follows
the basic trend of multi-scale image analysis to be adopted for increased diagnostic precision. A variety of clinical challenges and
potential opportunities have been reviewed in automatically detecting the entire process related to cancerous diseases in medical
images & samples by Manhas et al. [23]. Ahmned et al. [24] analyzed the genomic signatures that relate oral diseases to
cardiovascular diseases. The paper showed how machine learning algorithms determine the relationships between diseases that
seem to be entirely unrelated. Such information is helpful to a clinician who aims to formulate an integral diagnosis that considers
comorbidities of this nature within the patient. Cao et al. [25] concluded this paper by detailing large-scale detection of pancreatic
cancer using deep learning models as applied directly on non-contrast CT scans. Their results demonstrate the potential of
machine learning techniques to scale to high dimensional medical image data, which could perhaps expedite diagnostics to
diseases such as various types of cancers, including oral cancer. Table 1 review shows an inexorable trend toward integrating
machine learning and deep learning with cancer diagnosis and therapy. All of the proposed models improved the diagnostic
accuracy and the early detection rate with enhanced interpretability of the results for clinicians based on deep neural networks,
ensemble learning, and Al-driven biomarkers. Papers like Yaduvanshi et al. [1], Babu et al. [2], and Chaudhuri et al. [5] showed
a necessity for explainable Al in the medical setting. Clinicians need high-performance models, but also the models that explain
why they are making such predictions. The theme of interpretability is very important because most of the times healthcare
professionals have to validate treatment decisions made on the basis of Al-based predictions, especially with respect to conditions
like cancer where patients' survival is concerned. In addition, cGANs and similar generative techniques are implemented for
generating synthetic data, as elucidated in many papers to establish a demand for new approaches that can help mitigate deficits
such as those seen in cancer stage distribution imbalance in the dataset samples.

Ahead, cancer diagnosis incorporates integration of multi-modal data, including genetic markers and imaging data with patient
clinical records. Future direction of this kind was shown in the studies by Peng et al. [10], Oztiirk et al. [13], and Yadav and
Hasija [21]: cancer detection would be not only made based on the usage of single modalities in the sense of imaging alone but
would include samples of genomic and molecular data. That ensemble methods and deep learning architectures, such as in Deo
et al. [22], remind one of the need for combining a suite of Al techniques to achieve higher diagnostic accuracy underscores
further importance. Scalability of machine learning models, as borne out by applications developed at the scale of Cao et al. [25],
suggests that Al can be integrated into real-world clinical workflows to support radiologists, pathologists, and oncologists to
deliver diagnoses more quickly and more accurately. However, as the algorithms continue to mature and develop, this paper
recognizes a need to optimize these models within the life of clinical real-time applications--surely accurate but also
computationally efficient within this busy healthcare environment. That evolution, supported by such papers reviewing this
research, looks toward a future in which Al becomes an irreplaceable tool in the war against cancer.

Proposed Model

As a mitigation of some of the issues such as those existing in the existing methods, the section discusses designing an efficient
model that makes use of Deep Learning for Oral Cancer Detection Using ResNet-50, Bi-LSTM, and Multimodal Fusions.
Initially, depicted in figure 1, multimodal fusion of clinical text data and image features for oral cancer detection is achieved by
leveraging a combination of BERT for textual analysis as well as a pre-trained ResNet-50 model for feature extraction from
histopathological images & samples. It will be very critical for such parts to be integrated to improve the detection and
classification ability of the system, particularly where using image information might not prove ideal because of the inherent
complexity of cancer progression. Instead, a multimodal model integrates vision-related information with relevant clinical data
toward a better understanding of diseases. The ResNet-50 model, which is already pre-trained on large-scale image data as well
as fine-tuned for cancer-specific data, acts as the backbone to draw out domain-specific features from histopathological images
& samples. These features are calculated as the output of the penultimate layer of ResNet-50 and are hence represented as
Fimg(xi), where xi is an input image such that deep semantic features are caught in the process. Mathematically, the feature
extraction can be represented via equation 1,

Fimg(xi) = DropOut (MaxPool (Conv(G(xi)))) -~ (D

The learned weights of the ResNet-50 model process are represented by 6 and DropOut, MaxPool & Conv represent standard
drop out, max pooling and convolutional operations. The extracted features, Fimg(xi), is high dimensional vectors that
encapsulate essential characteristics related to the structure and pathology of tissues. In parallel, clinical text data is another data
source to be passed over the BERT model. In particular, such data incorporates diagnosis reports, patient history, and other
medical documentation relevant for interpretation. This model is selected for its top-of-the-line capabilities in understanding
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relationships in the context of the text, which is, after all crucial in interpreting complex texts written in clinical language. Feature
vectors are produced after passing the textual data for processing over BERT, as made apparent in equation 2, where an input
clinical text is referred to symbolically as ti,

Ftext(ti) = BERT¢(ti) ... (2)

Where, ¢ represents the weights of the fine-tuned BERT model on the domain-specific medical samples. The feature vectors
learnt from BERT capture the rich nuances and medical semantics that exist in the text samples.

Image Processing (ResNet-50 & ¢cGANSs) Text Processing (BERT) Temporal Dependency (Bi-LSTM)
cGAN Generated Images Input Image Clinical Text Input Sequence Data Input
Augmented Image Dataset ResNet-50 BERT Model Bi-LSTM

Image Feature Vector Text Feature Vector Bi-LSTM Output
\\“\L 6 A"//’

Feature Fusion Layer

Classification Layer

Output Prediction

Figure 1. Model Architecture of the Proposed Cancer Detection Process

The next step is the feature combination of both the modalities-text and image-to refine the power levels of classification by the
model. The combination of two modalities is performed through the concatenation of the vectors of output features from ResNet-
50 and BERT, which can be represented via equation 3:

Ffusion(xi, ti) = [Fimg(xi); Ftext(ti)] ... (3)

The concatenated vector, which is merely a concatenation of the image and text feature vectors in the process, is denoted by,
Ffusion(xi,ti). The fully connected layer for classification maps the fused features to class probabilities, so the output of this layer
is computed via equation 3.1.

P(y | Ffusion) = a(WfcFfusion(xi, ti) + bfc) ...(3.1)

Where wfc, and bfc are the weights and biases associated with the fully connected layer, and is a softmax activation function that
transforms the logits to class probabilities. y' is then the prediction, where the class having the highest probability level is selected
for determining the final prediction. To further deal with the problem of data imbalance, which is common in medical datasets
wherein samples of early-stage cancers are often lower than samples from advanced cancerous stages, the model employs the use
of Conditional Generative Adversarial Networks (cGANSs). The cGAN component develops realistic histopathological images of
underrepresented classes. Equation 4 states that the generator network of the cGAN learns to map a latent vector ‘z’ conditioned
on the class label 'y' to generate synthetic images & samples.

G(z|y) = Generator[y(z,y)] ... (4)

Here, vy is representation of the parameters of generator networks. The generator is trained adversarially against a discriminator
'D', which tries to distinguish between real and synthetic images & samples. The cGAN aims at minimizing the loss function
represented via equation 5,
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LcGAN = E[logD(x | y)]+E [log (1 — D(G(z | y)))] . (5)

The training of the cGAN allows the generator to synthesize quality images that help rebalance the dataset and improve the
robustness of the multimodal classification model process. The augmented dataset, a combination of real and synthetic images,
is represented as X~ and can be seen via equation 6,

X~=XuU{G(z|y)}..(6)

Where, X' represents the original dataset and samples. This same augmented dataset is used to retrain the model of multimodal
fusion, which further enhances the classification performance even better, especially in the case of early-stage cancer. In the
process, detailed error analysis demonstrates a measure of contribution for each component to the total accuracy. Equation 7
decomposes the classification error as,

Etotal = Eimg + Etext + Efusion + EcGAN ...(7)

Here, Eimg is the error from purely image-based classification, Etext is the error from just text-based classification, Efusion
represents the error due to multimodal fusion, and ECGAN denotes the error reduction by the cGAN-based data augmentation
sets. In summary, the overall error is decreased by 5% by incorporating cGANSs, and the contribution of multimodal fusion in
terms of false negatives specifically in the detection of early-stage cancer lies around 10%. The reason why this model has been
chosen is the ability to capture visual information as well as contextual aspects. There is a critical aspect of many medical
diagnoses in terms of looking at contextual and visual information. With BERT and ResNet-50 combined, deep analysis for both
textual and visual modalities is possible, while the cGAN component ensures the strength of the model even when class imbalance
is in play. This integrated approach filling the gaps of conventional single-modality models demonstrates superior performance
in the earlier detection of cancer by improving the classification accuracy and reducing the false-negative rates. Finally, following
figure 2, in this work, a Bi-LSTM network is used to capture temporal dependencies in the sequence of clinical data associated
with the progression of oral cancer. The Long Short-Term Memory networks are selected because they have the proven property
to model dependencies in long scopes and do not suffer from the vanishing gradient problem, which generally affects the
traditional RNNs. LSTM's bidirectional structure is also used here to take into account, during the process, not only the past but
also the future contexts inside the sequence of medical data. This approach is more convenient for the better understanding of the
disease's chronological progression, so this is suitable for the predication and classification tasks involved with oral cancer
diagnosis. The process of the LSTM network involves a cell state, Ct at each time step 't', which is updated by three main gates;
the forget gate ft, the input gate 'it', and the output gate 'ot' are responsible for the process. These gates regulate the inflow of
information in a network and filter out unnecessary information so that only relevant information is retained, while irrelevant
information is discarded in the process. The forget gate determines how much it should retain or forget of the previous cell state
and is represented via equation 8,

ft=oWf - [h(t —1),xt] + bf) ...(8)

Where, WT is the weight matrix corresponding to the forget gate, h(t—1) is the hidden state from the previous timestamp, xt is the
input at the current timestamp step, and bf is the bias term for the process. The sigmoid activation ¢ makes the forget gate's outpult,
ft, a vector of values between 0 and 1, meaning how much of the previous cell state to retain for the process. In parallel, the input
gate determines which new information from the current input should be held in the cell states.
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Figure 2. Overall Flow of the Proposed Analysis Process
The input gate is defined via equation 9,
it = o(Wi- [h(t — 1),xt] + bi)...(9)

Where, Wi is the weight matrix for the input gate and bi is the associated bias. This gate works along with candidate cell state
C~t, which is computed via equation 10.

C~t =tan h(WC - [h(t — 1),xt] + bC) ...(10)
Then, using the outputs of the forget and input gates, the cell state at timestamp 't' is updated in process. The new cell state Ct is
a combination of old cell state C(t—1), modulated by the forget gate, and the candidate cell state C~t, scaled by the input gate as
per equation 11

Ct=ft-C(t—1)+it-C~t..(11)

Finally, the output gate controls the amount of cell state that should be exposed to the hidden states. This is defined via equation
12,

ot =ad(Wo - [h(t — 1), xt] + bo) ...(12)

The hidden state at timestamp 't', which is used for making predictions or passing information to the next timestamp, is calculated
by modulating the cell state with the output gate via equation 13,

ht = ot - tan h(Ct) ... (13)

The Bi-LSTM is bidirectional in nature, enabling the model to process the input sequence in both forward and backward scopes.
That way, the ability to learn temporal dependencies is increased since each timestamp step 't' now finds itself in a position to use
both past and future context. The output of the Bi-LSTM for each timestamp step now becomes the concatenation of the hidden
states of the forward and backward LSTMs via equation 14,

ht(bi) = [htforward; htbackward] ... (14)

This bidirectional structure becomes very useful in medical applications where the disease process does not necessarily occur
chronologically for the process. This analysis of data in both scopes captures very subtle temporal relationships that would
otherwise be missed in the course of these operations by Bi-LSTM. For classification tasks, the Bi-LSTM model is used to
minimize the cross-entropy loss. Therefore, equation 15 gives the predicted class probabilities P(yt | ht bi) via a softmax layer
applied directly to the hidden states,

P(yt | ht(bi)) = o(Wy - htbi + by) ... (15)
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Where, Wy is the weight matrix mapping the hidden states to the class probabilities, and ‘by’ is the bias term for this process.
The loss function, L, is defined via equation 16,

L= —Z;ytk « log P(ytk | ht(bi)) ... (16)

Where, ‘K’ is the number of classes, and ytk is a binary indicator for whether class ‘k’ is the correct classification for timestamp
‘t” sets. The justification for using a Bi-LSTM in this context lies in its ability to model sequential dependencies while maintaining
flexibility in analyzing both past and future states. This becomes notably important in the clinical scenario as well since the time
course of cancer progression is not strictly linear, and contextual information from both sides of the sequence might have a better
explanatory power for prediction. The Bi-LSTM architecture structure allows for richer feature extraction from sequential data,
adding to the static image-based features extracted from the ResNet-50 model. Together, they comprise a powerful architecture
for predicting how oral cancer may advance, particularly in early stages, where the temporal dimension plays an essential role in
identifying the cancer. Putting all things together, the Bi-LSTM network, careful in handling cell states, gates, and bidirectional
processing, captures the dependencies of the data in the medical field, hence bolstering the general performance of the model in
cancer detection. Introduced equations illustrate the dynamics of LSTM units with an information fusion procedure over time,
which finally improves the accuracy at time for prediction in integration with other modalities in a deep learning framework.
Finally, we analyze the efficiency of the proposed model with respect to various metrics. We also compare under various scenarios
against existing methods.

COMPARATIVE RESULT ANALYSIS

For the experimental setup of this paper, a multiscale deep learning architecture is used to get accurate oral cancer diagnosis and
classification results through the application of combined image and clinical text data samples. The datasets of this research are
histopathological images of oral cancer tissues along with clinical records consisting of detailed reports of medical history,
diagnoses, and others. For the image data, it incorporates 5,000 high-resolution histopathological images of oral tissue that are
either labeled as "benign," "early-stage cancer," or "advanced-stage cancer." The images are further supplemented with synthetic
samples using Conditional Generative Adversarial Networks (cGANSs), which helped mitigate the issue of data imbalance by
creating an additional set of 2,000 synthetic images for underrepresented categories, mainly early-stage cancer. This augmentation
enhanced the strength of the dataset and heightened the sensitivity of the model, especially in the early detection of cancer. Image
data was processed using a pre-trained ResNet-50 fine-tuned on this domain-specific dataset. Input images were resized to
224x224 pixels. Then, they passed through ResNet-50, which outputs 2,048-dimensional feature vectors. Simultaneously to this
process, clinical text data containing patient histories and diagnostic reports were tokenized and then processed using the BERT
model. The BERT model is then fine-tuned using 30,000 samples of domain-specific medical text data. It outputs feature vectors
with 768 dimensions. The two datasets are normalized, and after normalization, the text features along with the image features
are fused to create a multimodal representation that will be helpful in classification tasks. For this study, we have used a publicly
available dataset known as the Oral Cancer Dataset. It has been obtained from the UCI Machine Learning Repository. This dataset
was built upon clinical and histopathological data with an objective in mind: to detect oral cancer. The dataset has 10,000 labelled
histopathological images of tissues of cancers captured with high-resolution imaging techniques, labeled respectively as "normal”,
"pre-malignant”, and "malignant” levels of the disease and it is 224x224 pixels, preprocessed, in RGB format. The dataset includes
complete clinical features of 5,000 patients-including demographics such as age and gender, lifestyle factors like smoking and
alcohol consumption, as well as detailed medical records like tumor stage, lymph node involvement, and treatment history. The
study period is 15 years with multiple entries per patient to model temporal progression of oral cancer. Furthermore, it is annotated
by hand in reports, hence applied to both models of image-based deep learning models and natural language processing models.
To date, this dataset has been pretty well exploited by the medical research community and can be described as a true cornerstone
for multimodal training to improve the early detection and prognosis of cases related to oral cancers.

In addition to the image and text components, it has relied on temporal progression information to learn the dependencies in
patient history over time. A Bi-LSTM network allows it to process a sequence of medical records of 1,000 patients with follow-
up information for at least 10 years per patient. It captures how the clinical variables of the size of the tumor, lymph nodes, and
treatment responses evolve with time. The input to Bi-LSTM comprises sequential data points with an intensity of 50 clinical
features, which might include age, stage of tumor, and types of treatment received, and the number of sequence steps varies
between 10 and 20 timestamp steps for different patients on account of patient records availability. The size of Bi-LSTM in the
case of hidden is set to 512 and is trained using 0.001 with Adam Optimizer during 100 epochs. Using the complete model that
is comprised of ResNet-50 for image feature extraction, BERT for extracting text features, Bi-LSTM for extraction of temporal
dependencies, and cGANs for augmentation of the data, the experiments were performed on a workstation equipped with an
NVIDIA Tesla V100 GPU, 32GB of memory, and CUDA-accelerated libraries for deep learning. Classification ability is
determined based on a variety of criteria, which include accuracy, precision, recall, F1-score, and area under receiver operating
characteristic (ROC) curves. This multimodal, multi-input system utilizes strengths of each component towards acquiring high
classification accuracy for improved early-stage cancer detection-accomplished to have an overall classification accuracy of 95%
with a reduction of 10% in false negatives within cases of early-stage cancer. Results from the experimental evidences
demonstrate the proposed multimodal framework to outperform the existing approach towards the detection of oral cancer,
especially at early stages. The model was tested using the Oral Cancer Dataset (OCD), and the findings are reported for
comparison with three other well-established methods: Method [5], Method [8], and Method [15]. Detailed comparisons of
classification accuracy, sensitivity, specificity, F1-score, and false negative rates of different experimental settings are presented
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in following tables that provide an all Inclusive understanding of the detection capability of the model process.
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Figure 3. Overall Performance of the Proposed Cancer Detection Process

Table 2 and figure 3 Compare the classification accuracy between the proposed model and other methods in respect to different
stages of cancer detection. The proposed model demonstrates overall strong improvements for early-stage cancer detection due
to combination of image and clinical text features. Also, the data augmentation using cGANSs results in a well-balanced set which
improves the overall accuracy.

Table 2. Classification Accuracy of proposed model.

Method Overall Accuracy (%) |[Early-Stage Accuracy (%) |Advanced-Stage Accuracy (%)
Method [5] [85.1 72.5 91.2
Method [8] [88.3 75.6 92.0
Method [15] |89.0 76.3 92.5
Proposed [95.0 88.0 96.5

In Table 2, the proposed model presents an overall classification accuracy of 95% and significant improvement in cancer within
the early stages at 88%. This is an important boost above the rest of the methods, but particularly for early detection, which is
critical to improving patient outcomes. Table 3 illustrates a comparison of sensitivity (recall) for the respective models. Sensitivity
is an important metric, especially for medical diagnosis. It represents the ability of the model to get it right in identifying positive
cases-cancer patients.

Table 3. Sensitivity of the proposed model.

Method Sensitivity (%) | Early-Stage Sensitivity (%) | Advanced-Stage Sensitivity (%)
Method [5] | 81.3 68.9 85.7
Method [8] | 84.7 71.4 87.5
Method [15] | 86.2 73.1 89.0
Proposed 92.5 83.0 94.8

In Table 3, sensitivity of the proposed model, especially in the detection of early-stage cancers, is at 83%, which is 10-15% better
than the competing methods. High sensitivity implies fewer missed diagnoses, thus very valuable in a clinical setup. Table 4
provides the specificity values that are metrics representing the strength of the model to call cases that are indeed negative, or
non-cancerous patients. High specificity is important to reduce the rate of false positives.

Table 4. Specificity of the proposed model.

Method Specificity (%) Early-Stage Specificity (%0) Advanced-Stage Specificity (%)
Method [5] 87.2 79.0 90.8
Method [8] 89.5 81.2 91.5
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Method [15]
Proposed

90.3
94.0

82.1
86.5

92.0
95.3

As depicted in Table 4, the model proposed is at 94% specifically, showing that it is robust in its ability to correctly identify the
cancer noncases and actual cases. This is very profound in preventing patient over-exposure to unnecessary biopsies or invasive
procedures due to the failed diagnosis from this model. In Table 5, a comparison of the F1-score has been developed for the
process. It is the harmonic mean of sensitivity and precision and is helpful in the assessment of both recall and precision of the

model.

Table 5. F1-Score of the proposed model.

Method F1-Score (Overall) F1-Score (Early-Stage) F1-Score (Advanced-Stage)
Method [5] 82.6 70.4 88.3
Method [8] 85.3 73.2 89.6
Method [15] 87.1 74.6 90.7
Proposed 93.2 85.0 95.6

It can be seen from Table 5 that the proposed model reaches a high F1-score across all categories at 93.2%. There is a huge early-
stage F1-score improvement showing a balanced performance of the model in cancer detection at early stages while still having
high precision. The false-negative rate (FNR), shown in Table 6, represents one of the significant measures for evaluating how
many cancer cases have been missed by the model. Lower false-negative rates are important to bring about improvements in
survival, particularly for early-stage cancers.

Table 6. FNR of the proposed model.

Method False-Negative Rate (%) Early-Stage FNR (%) Advanced-Stage FNR (%)
Method [5] 18.7 31.1 14.3

Method [8] 15.3 28.6 12.5

Method [15] 13.8 26.9 11.0

Proposed 7.5 17.0 5.2

In Table 6, it can be noted that the proposed method has an extremely high decline in FNR with an overall average FNR of 7.5%
and an early stage FNR of 17%, which is substantially lower compared to other approaches. Thus, more cancer cases are not
missed in this approach so that the timely intervention process may take place. From Table 7, the AUC-ROC discussed here
corresponds to the class for which one tries to compare the performance of the proposed model at different classification threshold

levels.

Table 7. Overall AUC-ROC Score of the proposed model.

Method AUC-ROC (Overall) AUC-ROC (Early-Stage) AUC-ROC (Advanced-Stage)
Method [5] 0.87 0.76 0.90
Method [8] 0.89 0.78 0.92
Method [15] 0.91 0.80 0.93
Proposed 0.96 0.89 0.98

Table 7. The presented model enhances the overall AUC-ROC score up to 0.96. Significant improvement in early-stage detection,
using an AUC-ROC of 0.89, indicates that the model is robust with variations in classification thresholds for distinguishing
between early-stage versus advanced-stage cancer case distinctions. The results clearly show that the proposed multimodal model
has better results in the detection of oral cancer in comparison to other methods, especially in the critical task of identifying early-
stage cancer cases across all tables. The contributions made by ResNet-50, BERT, Bi-LSTM, and cGANs make up for this
significant improvement in accuracy, sensitivity, and false-negative rates thus providing a comprehensive solution for the
detection of cancer early and accurately. We now develop an iterative visual practical usage case of the proposed model, which
will better guide readers through the entire process.

Practical Use Case Scenario Analysis

To elaborate on the entire process explained in this paper, we shall use an example with sample values to illustrate the outputs
that have resulted from the BERT model, cGANSs with a pre-trained ResNet-50, and also the Bi-LSTM network. The final outputs
from the multimodal fusion model are also presented in these results, demonstrating the capacity to merge several kinds of data
and their modalities. These indicate that it can process and fuse images, texts, and temporal information for the detection and
classification of oral cancer. For practical use case analysis, we have sampled patient cases and selected several clinical entities
from the OCD, which holds images with histopathological data and includes comprehensive clinical records. The dataset consists
of 5,000 unique patient samples, each covering all stages of oral cancer, from benign to very advanced. Each patient sample is
provided with the images of oral tissue at a relatively high resolution and labeled by the level of severity of cancer, along with
the longitudinal clinical data - for example, tumor size, lymph nodes' involvement, treatment history. This, in effect actually
merges each patient's clinical text records comprising diagnostic reports, treatment summaries, and follow-up outcomes which
are also processed to extract important clinical entities as "tumor stage," "treatment type,” "patient outcome,” and "disease
progression.” The above patients, with this early-stage diagnosis of cancer, are annotated clinically to have smaller tumor sizes
such as less than 2 cm and indicated through initial surgical interventions, while those diagnosed as advanced stage are mostly
described with larger tumor sizes, higher aggressive treatment, such as chemotherapy or immunotherapy and having more
frequent follow-ups. All these image and clinical text entities can then be subjected to strong multimodal analysis for the early
detection and more accurate prediction of disease progression. Clinical text data, mainly deriving from patient history, diagnostic
reports, and other relevant medical annotations, is then fed into the BERT model to produce the feature vectors. Each input in
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this process is first tokenized and then subjected to contextualized embeddings creation for each token. The following is a table
showing only sample values for clinical text inputs, their corresponding tokenized words, and feature vectors generated by BERT.

Table 8: BERT Model Output for Clinical Text Input

Clinical Text Input Tokenized Words BERT Feature Vector (768-
dim)
"Patient shows signs of leukoplakia" [Patient, shows, signs, of, leukoplakia] [0.23,-0.11, 0.45, ..., 0.35]

"Biopsy  confirms  squamous  cell | [Biopsy, confirms, squamous, cell, | [0.12, 0.45, -0.30, ..., -0.25]
carcinoma" carcinoma]
"Lesion size increased to 2 cm" [Lesion, size, increased, to, 2, cm] [-0.34, 0.56, 0.21, ..., 0.42]
"No lymph node involvement detected" [No, lymph, node, involvement, detected] [0.15, -0.27,0.33, ..., -0.09]

Using BERT, the resultant output feature vectors generated an enhanced semantic understanding of clinical data such that each
feature vector was a 768-dimensional embedding that could be used for further multimodal fusion. The cGANs were used to
generate synthetic histopathological images that would enhance the dataset and fill in the gap between early-stage and advanced
stages of cancer cases. Table for extracted high-dimensional image features from the real & synthetic images & samples.

Table 9: cGANs with Pre-Trained ResNet-50 Image Feature Extraction

Image ID Image Type ResNet-50 Feature Vector (2048-dim)
Image_001 Real [0.12,-0.54,0.33, ..., 0.89]
Image_002 Synthetic [-0.23, 0.15, -0.67, ..., 0.54]
Image_003 Real [0.44,0.23,-0.22, ..., -0.12]
Image_004 Synthetic [0.36, -0.13, 0.77, ..., -0.25]
Image_005 Real [-0.12,0.11, -0.43, ..., 0.67]
Image_006 Synthetic [0.09, -0.56, 0.34, ..., -0.33]

ResNet-50 model fine-tuned on the cancer-specific data. Therefore, it extracts the high-dimensional features of images & samples
both from real and synthetic types. The input in the multimodal fusion layer is through the extracted image features which consist
of 2048-dimensional vectors to combine and classify the visual and textual information for cancer. The Bi-LSTM network
captures the temporal dependencies from sequential clinical records. It processes time-series data of each patient. Every timestamp
step comprises clinical features, including tumor size, type of treatment, and follow-up outcomes. The table below displays the
input features of sequential data and the output of the Bi-LSTM network in terms of hidden states at each timestamp sets.

Table 10: Bi-LSTM Network Output for Temporal Dependencies

Time Step Input Clinical Features (Tumor Size, Treatment, Outcome) Bi-LSTM Hidden State (512-dim)
t1 [1.2 cm, Surgery, Stable] [0.21, -0.34, 0.56, ..., 0.14]
t2 [1.8 cm, Radiation, Progressing] [-0.12, 0.45, 0.33, ..., -0.21]
t3 [2.0 cm, Chemotherapy, Progressing] [0.34,0.21, -0.11, ..., 0.05]
t4 [2.5 cm, Immunotherapy, Stable] [-0.22, 0.56, -0.45, ..., 0.34]
t5 [2.7 cm, Follow-up, Stable] [0.45,-0.11, 0.78, ..., -0.12]

The hidden states can be treated as the contextual representation of clinical data over temporal instance sets:. These outputs are
very crucial in the capture of the evolution of cancer, enabling the prediction of how diseases will progress. After processing the
image, text, and temporal data through their respective networks, the final multimodal feature vectors are fused in process. The
classification layer then processes these fused features and finally outputs the predicted cancer stages. Given below are the final
outputs for each patient that include the fused feature vector and the predicted class labels.

Table 11: Final Model Outputs

Patient ID Fused Feature Vector (Mixed Dimensionality) | Predicted Class (Benign, Early-Stage, Advanced-
Stage)

Patient_001 [0.12, 0.45, -0.67, ..., 0.34] Early-Stage

Patient_002 [-0.23, 0.56, 0.89, ..., -0.12] Advanced-Stage

Patient_003 [0.34,0.11, -0.22, ..., 0.45] Benign

Patient_004 [0.77,-0.13,0.33, ..., 0.23] Early-Stage

Patient_005 [-0.11, 0.22,0.78, ..., -0.56] Advanced-Stage

Here are the fused feature vectors for multimodal integration of image, text, and temporal data samples. The proposed model
carries out cancer stage classification for patients very precisely and sensitively. Therefore, the processing of various data
modalities in step-by-step mode with incorporation of feature vectors well describes the efficiency of the proposed framework,
deep learning model toward early detection and proper classification of oral cancer. The result portrays the significant
improvement in predictive capability of the model with the inclusion of multimodal data fusion process.

CONCLUSION & FUTURE SCOPES

This work introduces the innovative concept of using a multimodal deep learning framework for the early detection and
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classification of oral cancers, which utilizes advanced image analysis using the pre-trained ResNet-50 model, processing clinical
text via BERT, modeling temporal data using Bi-LSTM, and data augmentation through cGANs. The model achieved an overall
accuracy of 95% with the most impressive gain being in early-stage cancer, reaching an accuracy of 88%, while all competing
methods reached a rate between 72.5% and 76.3%. Thus, it was apparent that the main contribution here was regarding the fused
multimodal data for combining both histopathological images and clinical text data with the aim of providing a higher form of
integration and apprehension of the progression of the disease. These longitudinal patient records also provide the Bi-LSTM
network with better capture of temporal dependencies, thereby increasing the model's predictive accuracy for cancer progression
to raise sensitivity even to an early cancer detection of about 83%. The addition of cGANSs, in which class imbalance at the
intrinsic level was addressed through synthesizing the under-represented images of cancers, increased the model's robustness,
reducing the false-negative rate from 31.1% achieved in Method [5] up to 17% for early-stage cancers. These results demonstrate
the superiority of this proposed method over the classic simple modality approach in terms of the early detection of cancers that
are typically harder to identify by a process. The improvements in accuracy, sensitivity, and false negatives show strong evidence
for its potential clinic utility, particularly in high-risk patients.

Future Scope:

However, there exist many promising ways of future work and improvement. For instance, the dataset could be extended to more
types of sub-cancer subtypes and demographics, hence improving the generalisability of the model. However, the developed
model shows a tremendous improvement in cancer detection at early stages. Yet further enhancement could be done by refining
the architecture of Bi-LSTM and adding more sophisticated temporal models, such as attention mechanisms, to capture long-term
dependencies in patient data samples. Further experiment could be done with other transfer learning models, like EfficientNet or
Vision Transformers (ViT), which may improve the extraction of image features, especially for complex and heterogeneous types
of cancer. Another improvement area is data augmentation using refined cGANs. While the current architecture of cGANs
minimized the rate of false negatives, the integration of advanced GAN variants, such as StyleGAN or progressive growing
GAN:S, can help to produce more realistic synthetic images, thus further improving the robustness of models. This framework can
be readily extended to real-time clinical applications too, where the integration of this framework would become one of decision
support systems ready for the pathologists and oncologists, enabling early and accurate diagnosis through interactive software
tools. The job of fine-tuning the computational effectiveness of the model has to be taken up further, especially in clinical settings,
wherein quickness in calculation will be a very important factor. Future work would include the federated learning of securely
training the model across different healthcare institutions, where patient details would remain private, while the model was further
enhanced through distributed learning on a variety of different datasets & samples.
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