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ABSTRACT 

Oral cancer represents one of the major health concerns worldwide. More importantly, despite treatments with advanced 

modalities, it still leads to a high level of morbidity and mortality, mainly occurring late. The present detection methods available 

traditionally in this disease rely on very limited data, which brings low performance in the early stages of the disease. We proposed 

an all-inclusive deep learning framework combining an advanced CNN-RNN strategy along with the transfer learning concept to 

enhance robustness for oral cancer detection tasks. This involves four novel techniques. We take a pre-trained ResNet-50 model, 

tuned for datasets relative to cancers that improve visual classification up to 92% from 85%. A Bi-LSTM network captures the 

temporal dependencies in the sequence of data and improves the accuracy of disease progression prediction from 78% to 88%. 

The third approach is multimodal fusion, which combines BERT's clinical text multimodal fusion with the features of 

histopathological images from ResNet-50. This shows the fusion of textual and visual diagnostic information, achieving an overall 

classification accuracy of 95%. Finally, we use cGANs to synthesize some cancer images, handle data imbalance and boost model 

robustness by 5%. This increases the accuracy in early detection as well as reduces false negative cases regarding about 10% of 

all early-stage cancers. In comparison with traditional techniques, our model, which possesses the mechanism of domain-specific 

transfer learning, sequential analysis of data, multimodal fusion, and data augmentation, shows better performance and may be a 

new approach toward early diagnosis and treatment of oral cancers.  
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INTRODUCTION 

Orally developed cancer still remains an important public health issue. Orally developed cancer causes more than 300,000 new 

cases and nearly 180,000 deaths every year in the world. With the advent of medical imaging and diagnostic apparatuses, detection 

of oral cancer early on remains problematic, particularly if changes in the morphological structure of tissues are subtle and 

unnoticed. With delayered diagnosis, both the prognosis of the patient and treatment effectiveness are reduced due to increased 

mortality. Deep learning [1, 2, 3] has been found to be very promising in the application domain of medical imaging in the form 

of enhancing diagnostic accuracy for various kinds of cancers. However, most of the traditional approaches so far rely upon either 

limited databases or generalized models that fail to capture exactly the characteristics of morphology for oral cancers. Current 

methods relying on the application of convolutional neural networks are typically built on more general images, such as ImageNet, 

so they are less domain-specific and have not accounted for specific relevance within far better detection of cancer. In addition 

to this, these models completely forget to consider the temporal nature of disease progression that may become an important 

factor while determining the severity of cancer and the probable progression in the near future. Other than this, classical CNN 

models are unable to focus on multimodal data like clinical notes or patient history, which provides much diagnostic insight aside 

from visual analysis. Lastly, the problem of data imbalance, especially of early-stage cancer images, presents a significant 

problem in training robust models against overfitting and high false positive rates. We propose an all-inclusive deep learning 

framework in this work for the detection of oral cancer, thus bringing the best from a few of the advanced methodologies while 

avoiding these limitations. In our method, we next leverage domain-specific transfer learning using the ResNet-50 model pre-

trained on the cancer datasets to mine a higher-level feature in histopathological images; which further improves the visual feature 

by incorporating the analysis capabilities of the sequential data of Bidirectional Long Short-Term Memory networks in an effort 

to capture relationships between disease progression and time. To address the holistic diagnosis problem, we establish a new 

approach, which incorporates multimodal fusion based on BERT-processed clinical text data and image-based features. This shall 

integrate textual as well as visual information and achieve better accuracy in the diagnosis of cancer with proper context. 

Furthermore, to counter the scarcity of data, especially regarding early oral cancer, we are utilizing cGANs to supplement data 

with realistically synthesized images which would result in better generalization of the models by balancing out the dataset. 

Combining these methodologies, our framework attempts to improve the accuracy of the oral cancer detection, especially at early 

stages of the disease, thus lowering the false negative rate. This corrects the deficiencies of the present diagnostic models while 

laying new pathways toward using deep learning in precision cancer diagnosis and treatment. 
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Motivation & Contribution 

The motivation behind this research arises due to a gap found between the early detection rate of oral cancer. With the 

advancement in diagnostic technologies, the sensitivity and specificity of oral cancer still remain as a critical factor in patient 

survival rates and treatment efficacy sets. Although significant progress has been reported in medical imaging using deep learning, 

the current approaches generally lack domain-specific relevance and fail to incorporate necessary information related to the 

clinical temporal dynamics and multimodality. Most of the models developed recently are just trained on general datasets lacking 

distinct morphological characteristics of oral cancer; therefore, their performance is drastically reduced in real-world clinical 

applications. Moreover, in most cases such models do not account for the temporal nature of such data-for instance, such as the 

cancer evolution in time. That is very important to be known when reaching the level of disease seriousness or determining the 

outcomes. With the datasets being imbalanced and the lack of adequate early-stage oral cancer data, the resulting models tend to 

be overfitted and characterise poor generalization capabilities. In this paper, a new deep architecture of learning is proposed 

overcoming the existing limitations by the collective contribution of state-of-the-art techniques that were specifically devised to 

achieve the accurate detection of oral cancers. We will incorporate at the first level a pre-trained ResNet-50 model fine-tuned to 

the relevant cancer datasets, so features derived will be domain-specific and thereby optimized to be discriminative for 

malignancy in tissues across the oral cavity. We introduce a Bi-LSTM network, which captures deep sequential dependency 

between sequential data, such as biopsy images over a period of time, hence enhancing the ability of a predictive model to predict 

the progression of the disease at hand. Third, we introduce multimodal fusion combining BERT for clinical text analysis with 

CNN-extracted image features and offering holistic diagnostic approach by leveraging both visual data and textual data of cancer 

risk in a more holistic fashion. We also used cGANs to synthesize images for addition to the dataset, specifically focusing on 

underrepresented classes in the dataset, namely early-stage cancer, to make the model even more robust and reduce overfitting. 

Overall, these contributions lead to a robust and accurate deep learning-based oral cancer detection solution which finds 

improvements in terms of classification accuracy, false negative rates, and generalisability for imbalanced datasets & samples. 

This work makes it to the advancement in medical image analysis and will actually provide a framework that can easily be 

extended to other forms of cancer or medical conditions, thereby opening new avenues for early detection and developing 

personalized treatment strategies. 

 

LITERATURE REVIEW 

The review of existing works would present a broad and all-embracing analysis regarding the recent advancements in machine 

learning and deep learning methods applied to cancer detection such as oral cancer. It has observed that a scheme of machine 

learning algorithms when combined with medical imaging data and clinical data has proven promising capabilities for enhanced 

diagnostic accuracy, early detection, and the overall prognosis in cancer patients. For instance, Yaduvanshi et al. [1] reported that 

application of a modified local texture descriptor coupled with machine learning techniques significantly improved the 

classification of oral cancer than conventional methods from histopathological images. Similarly, Babu et al. [2] proposed 

explainable deep learning, which can provide a transparent and interpretable model, particularly for the stages of oral cancer, of 

which the importance is significantly crucial in clinical trust and adoption. These studies suggest that cancer detection not only 

becomes more accurate by using machine learning models but also more interpretable in the decision-making process for health 

care professionals. A number of papers investigated blood-based biomarkers and serum micro-RNAs as potential detection 

methods for various types of cancers, including oral cancer. For instance, in the work of Vittone et al. [3], it has been demonstrated 

how machine learning-based MCED tests can detect cancers at early stages, which are not even targeted for screening by USPSTF 

recommendations. Liao et al. [4] continued working in the same area and synthesized machine learning workflows with mutation-

targeted RNA modifications to identify serum micro-RNAs, indicating their strength as strong cancer biomarkers. This was also 

found to be more effective in early oral cancer risk estimation with the use of Raman cyto-spectroscopy, as pointed out by 

Chaudhuri et al. [5], as it proved effective in spectral data sample analysis. More generally, Rai and Yoo [6] have provided an 

all-inclusive analysis of several machine learning and deep learning models in showing the usefulness of the same across several 

types of cancer, with detection of oral cancer largely being founded on the same in large-scale image classification and diagnostic 

workflows. Warin and Suebnukarn [7] thoroughly reviewed deep learning applications in the diagnosis of oral cancer, where they 

showed how CNNs and their variants have transformed the face of imaging-based diagnosis. The work of Somyanonthanakul et 

al. [8] on fuzzy deep learning presented techniques for survival estimation in oral cancer, which is where the fusion of fuzzy logic 

with deep learning provides more personalized survival predictions based on an individual patient's data samples. This 

personalized approach resonates with the work done by Raj and Muneeswari [9], where they use the intelligent deep network, 

optimized for OSCC detection, known as OASTDN. The values of specificity and sensitivity depict here raise the importance of 

developing architectures specific to cancer that can utilize peculiarities of different cancers. Peng et al. [10] used deep learning 

to classify and grade oral epithelial dysplasia in leukoplakia which is a precursor to oral cancer. Their model was very effective 

in handling the imbalanced datasets that is a common issue in medical studies. The application of AI in the prediction of cancer 

in the female anatomy of Ghantasala et al. [11] provided insights into generalized machine learning methods and their ability to 

be applied across different types of cancers such as on oral and non-oral cancers. Sampath et al. [12] presented OralNet, which is 

the deep learning fusion model of lip and tongue image data that demonstrate how the combination of logistic regression with 

stochastic gradient descent might enhance oral cancer identification. More relevantly, Öztürk et al. [13] used machine learning 

models applied on MRI data to predict bone invasion of oral squamous cell carcinoma. Their approach shows how cancer may 

be modeled using non-invasive imaging techniques to predict the cancer's severity; this research is similar to earlier spectroscopy-

based models developed by Kumar et al. [15], who classified mucosal lesions at stages where the patient was diagnosed with 

cancer. Therefore, they articulate the important role that is being played by images in the non-invasive diagnosis process. Bhatt 

and Shende [16] have presented a strategic review of the application of machine learning in cancer identification to treatment, 
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which reflects how computing has moved from simplistic aiding computation to more higher-order models that do not only predict 

but also recommend several follow-up lines of treatment. Uddin et al. [17] extended this application to diabetes detection, 

illustrating how the best minds in machine learning are flexible enough to apply to the wider health service while Shi et al. [18] 

combined pharmacokinetics with machine learning for drug-screening purposes aimed at interacting with the intestines to further 

prove the cross-domain application of AI in drug therapy approaches, meant for cancer treatment. Nopour's [19] was focused on 

ovarian cancer screening, so it means the risk factor analysis developed by machine learning might be used for different types of 

cancers. Nimmagadda et al. [20] could demonstrate how, through machine learning, predictions about chronic kidney disease 

(CKD), a very common complication in chemotherapy patients, might be enabled in process. 

Table 1. Comparative Review of Existing Methods 

Method Authors Year Main Approach Findings 

Modified Local 

Texture Descriptor + 

ML Algorithms 

Yaduvanshi et al. [1] 2024 Modified texture 

descriptors for image 

classification combined 

with ML 

Achieved improved 

classification accuracy for oral 

cancer detection using image 

texture analysis. 

Explainable Deep 

Learning for Oral 

Cancer Detection 

Babu et al. [2] 2024 Explainable deep learning 

model with visual 

interpretability 

Provided interpretable cancer 

detection results, aiding clinical 

decision-making with 

transparent AI. 

Multi-Cancer Early 

Detection Blood Test 

Vittone et al. [3] 2024 Machine learning applied 

to blood-based biomarkers 

Successfully detected early-

stage cancers lacking standard 

screenings, expanding the 

diagnostic scope. 

RNA Modification 

with ML for Cancer 

Detection 

Liao et al. [4] 2024 Mutation-targeted RNA 

modifications analyzed 

using ML workflows 

Identified microRNAs as 

potent cancer detection 

biomarkers, enhancing 

diagnostic precision. 

Raman Cyto-

Spectroscopy + ML 

Ensembles 

Chaudhuri et al. [5] 2023 Spectral data analysis 

using ML ensembles 

Improved early-stage oral 

cancer risk assessment using 

Raman spectroscopy and 

ensemble ML techniques. 

Fuzzy Deep Learning 

for Survival 

Estimation 

Somyanonthanakul et al. 

[8] 

2024 Fuzzy logic integrated with 

deep learning 

Enabled personalized survival 

prediction for oral cancer 

patients, improving prognosis 

assessments. 

Intelligent Deep 

Network (OASTDN) 

for OSCC 

Raj and Muneeswari [9] 2024 Optimized deep network 

for oral squamous cell 

carcinoma detection 

Enhanced detection and 

classification of OSCC with 

increased specificity and 

sensitivity. 

Deep Learning for 

Oral Epithelial 

Dysplasia Grading 

Peng et al. [10] 2024 Deep learning applied to 

oral leukoplakia grading 

Achieved high accuracy in 

grading oral epithelial 

dysplasia, helping in early 

cancer intervention. 

OralNet Fusion Model 

for Lips and Tongue 

Images 

Sampath et al. [12] 2024 Deep learning fusion of 

lips and tongue images 

with logistic regression 

Demonstrated improved oral 

cancer identification using 

multi-image modalities for 

early-stage detection. 
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MRI-Based ML Model 

for Bone Invasion 

Prediction 

Öztürk et al. [13] 2024 Machine learning applied 

to MRI data for predicting 

bone invasion 

Successfully predicted bone 

invasion in oral squamous cell 

carcinoma, aiding in clinical 

treatment planning. 

From table 1 it can be very well observed that Yadav and Hasija [21] analyzed the crosstalk between oral and esophageal cancers 

using gene expression analysis which specifically addresses the involvement of gene-microRNA networks. That way, clinicians 

could take advantage of the interpretable models of machine learning to unravel biological insights about the mechanisms of such 

cancers. Likewise, Deo et al. [22] applied ensemble deep learning models in oral cancer histopathological image classification 

that used empirical wavelet transforms for the improvement of feature extraction and classification accuracy. This method follows 

the basic trend of multi-scale image analysis to be adopted for increased diagnostic precision. A variety of clinical challenges and 

potential opportunities have been reviewed in automatically detecting the entire process related to cancerous diseases in medical 

images & samples by Manhas et al. [23]. Ahmned et al. [24] analyzed the genomic signatures that relate oral diseases to 

cardiovascular diseases. The paper showed how machine learning algorithms determine the relationships between diseases that 

seem to be entirely unrelated. Such information is helpful to a clinician who aims to formulate an integral diagnosis that considers 

comorbidities of this nature within the patient. Cao et al. [25] concluded this paper by detailing large-scale detection of pancreatic 

cancer using deep learning models as applied directly on non-contrast CT scans. Their results demonstrate the potential of 

machine learning techniques to scale to high dimensional medical image data, which could perhaps expedite diagnostics to 

diseases such as various types of cancers, including oral cancer. Table 1 review shows an inexorable trend toward integrating 

machine learning and deep learning with cancer diagnosis and therapy. All of the proposed models improved the diagnostic 

accuracy and the early detection rate with enhanced interpretability of the results for clinicians based on deep neural networks, 

ensemble learning, and AI-driven biomarkers. Papers like Yaduvanshi et al. [1], Babu et al. [2], and Chaudhuri et al. [5] showed 

a necessity for explainable AI in the medical setting. Clinicians need high-performance models, but also the models that explain 

why they are making such predictions. The theme of interpretability is very important because most of the times healthcare 

professionals have to validate treatment decisions made on the basis of AI-based predictions, especially with respect to conditions 

like cancer where patients' survival is concerned. In addition, cGANs and similar generative techniques are implemented for 

generating synthetic data, as elucidated in many papers to establish a demand for new approaches that can help mitigate deficits 

such as those seen in cancer stage distribution imbalance in the dataset samples. 

Ahead, cancer diagnosis incorporates integration of multi-modal data, including genetic markers and imaging data with patient 

clinical records. Future direction of this kind was shown in the studies by Peng et al. [10], Öztürk et al. [13], and Yadav and 

Hasija [21]: cancer detection would be not only made based on the usage of single modalities in the sense of imaging alone but 

would include samples of genomic and molecular data. That ensemble methods and deep learning architectures, such as in Deo 

et al. [22], remind one of the need for combining a suite of AI techniques to achieve higher diagnostic accuracy underscores 

further importance. Scalability of machine learning models, as borne out by applications developed at the scale of Cao et al. [25], 

suggests that AI can be integrated into real-world clinical workflows to support radiologists, pathologists, and oncologists to 

deliver diagnoses more quickly and more accurately. However, as the algorithms continue to mature and develop, this paper 

recognizes a need to optimize these models within the life of clinical real-time applications--surely accurate but also 

computationally efficient within this busy healthcare environment. That evolution, supported by such papers reviewing this 

research, looks toward a future in which AI becomes an irreplaceable tool in the war against cancer. 

 

Proposed Model 

As a mitigation of some of the issues such as those existing in the existing methods, the section discusses designing an efficient 

model that makes use of Deep Learning for Oral Cancer Detection Using ResNet-50, Bi-LSTM, and Multimodal Fusions. 

Initially, depicted in figure 1, multimodal fusion of clinical text data and image features for oral cancer detection is achieved by 

leveraging a combination of BERT for textual analysis as well as a pre-trained ResNet-50 model for feature extraction from 

histopathological images & samples. It will be very critical for such parts to be integrated to improve the detection and 

classification ability of the system, particularly where using image information might not prove ideal because of the inherent 

complexity of cancer progression. Instead, a multimodal model integrates vision-related information with relevant clinical data 

toward a better understanding of diseases. The ResNet-50 model, which is already pre-trained on large-scale image data as well 

as fine-tuned for cancer-specific data, acts as the backbone to draw out domain-specific features from histopathological images 

& samples. These features are calculated as the output of the penultimate layer of ResNet-50 and are hence represented as 

Fimg(xi), where xi is an input image such that deep semantic features are caught in the process. Mathematically, the feature 

extraction can be represented via equation 1, 

𝐹𝑖𝑚𝑔(𝑥𝑖) = 𝐷𝑟𝑜𝑝𝑂𝑢𝑡 (𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (𝐶𝑜𝑛𝑣(𝜃(𝑥𝑖)))) … (1) 

The learned weights of the ResNet-50 model process are represented by θ and DropOut, MaxPool & Conv represent standard 

drop out, max pooling and convolutional operations. The extracted features, Fimg(xi), is high dimensional vectors that 

encapsulate essential characteristics related to the structure and pathology of tissues. In parallel, clinical text data is another data 

source to be passed over the BERT model. In particular, such data incorporates diagnosis reports, patient history, and other 

medical documentation relevant for interpretation. This model is selected for its top-of-the-line capabilities in understanding 

http://www.verjournal.com/


 
VASCULAR & ENDOVASCULAR REVIEW 

www.VERjournal.com 

 

 

Deep Learning for Oral Cancer Detection Using ResNet-50, Bi-LSTM, and Multimodal Fusion 

92 

 

relationships in the context of the text, which is, after all crucial in interpreting complex texts written in clinical language. Feature 

vectors are produced after passing the textual data for processing over BERT, as made apparent in equation 2, where an input 

clinical text is referred to symbolically as ti, 

𝐹𝑡𝑒𝑥𝑡(𝑡𝑖) = 𝐵𝐸𝑅𝑇𝜙(𝑡𝑖) … (2) 

 

Where, ϕ represents the weights of the fine-tuned BERT model on the domain-specific medical samples. The feature vectors 

learnt from BERT capture the rich nuances and medical semantics that exist in the text samples. 

 

Figure 1. Model Architecture of the Proposed Cancer Detection Process 

The next step is the feature combination of both the modalities-text and image-to refine the power levels of classification by the 

model. The combination of two modalities is performed through the concatenation of the vectors of output features from ResNet-

50 and BERT, which can be represented via equation 3: 

𝐹𝑓𝑢𝑠𝑖𝑜𝑛(𝑥𝑖, 𝑡𝑖) = [𝐹𝑖𝑚𝑔(𝑥𝑖); 𝐹𝑡𝑒𝑥𝑡(𝑡𝑖)] … (3) 

The concatenated vector, which is merely a concatenation of the image and text feature vectors in the process, is denoted by, 

Ffusion(xi,ti). The fully connected layer for classification maps the fused features to class probabilities, so the output of this layer 

is computed via equation 3.1. 

𝑃( 𝑦 ∣∣ 𝐹𝑓𝑢𝑠𝑖𝑜𝑛 ) = 𝜎(𝑊𝑓𝑐𝐹𝑓𝑢𝑠𝑖𝑜𝑛(𝑥𝑖, 𝑡𝑖) + 𝑏𝑓𝑐) … (3.1) 

Where wfc, and bfc are the weights and biases associated with the fully connected layer, and is a softmax activation function that 

transforms the logits to class probabilities. y' is then the prediction, where the class having the highest probability level is selected 

for determining the final prediction. To further deal with the problem of data imbalance, which is common in medical datasets 

wherein samples of early-stage cancers are often lower than samples from advanced cancerous stages, the model employs the use 

of Conditional Generative Adversarial Networks (cGANs). The cGAN component develops realistic histopathological images of 

underrepresented classes. Equation 4 states that the generator network of the cGAN learns to map a latent vector ‘z’ conditioned 

on the class label 'y' to generate synthetic images & samples. 

𝐺( 𝑧 ∣∣ 𝑦 ) = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟[𝜓(𝑧, 𝑦)] … (4) 

Here, ψ is representation of the parameters of generator networks. The generator is trained adversarially against a discriminator 

'D', which tries to distinguish between real and synthetic images & samples. The cGAN aims at minimizing the loss function 

represented via equation 5, 
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𝐿𝑐𝐺𝐴𝑁 = 𝐸[𝑙𝑜 𝑔 𝐷( 𝑥 ∣∣ 𝑦 )] + 𝐸 [𝑙𝑜 𝑔 (1 − 𝐷(𝐺( 𝑧 ∣∣ 𝑦 )))] … (5) 

The training of the cGAN allows the generator to synthesize quality images that help rebalance the dataset and improve the 

robustness of the multimodal classification model process. The augmented dataset, a combination of real and synthetic images, 

is represented as X~ and can be seen via equation 6, 

𝑋~ = 𝑋 ∪ {𝐺( 𝑧 ∣∣ 𝑦 )} … (6) 

Where, 'X' represents the original dataset and samples. This same augmented dataset is used to retrain the model of multimodal 

fusion, which further enhances the classification performance even better, especially in the case of early-stage cancer. In the 

process, detailed error analysis demonstrates a measure of contribution for each component to the total accuracy. Equation 7 

decomposes the classification error as, 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑖𝑚𝑔 + 𝐸𝑡𝑒𝑥𝑡 + 𝐸𝑓𝑢𝑠𝑖𝑜𝑛 + 𝐸𝑐𝐺𝐴𝑁 … (7) 

Here, Eimg is the error from purely image-based classification, Etext is the error from just text-based classification, Efusion 

represents the error due to multimodal fusion, and EcGAN denotes the error reduction by the cGAN-based data augmentation 

sets. In summary, the overall error is decreased by 5% by incorporating cGANs, and the contribution of multimodal fusion in 

terms of false negatives specifically in the detection of early-stage cancer lies around 10%. The reason why this model has been 

chosen is the ability to capture visual information as well as contextual aspects. There is a critical aspect of many medical 

diagnoses in terms of looking at contextual and visual information. With BERT and ResNet-50 combined, deep analysis for both 

textual and visual modalities is possible, while the cGAN component ensures the strength of the model even when class imbalance 

is in play. This integrated approach filling the gaps of conventional single-modality models demonstrates superior performance 

in the earlier detection of cancer by improving the classification accuracy and reducing the false-negative rates. Finally, following 

figure 2, in this work, a Bi-LSTM network is used to capture temporal dependencies in the sequence of clinical data associated 

with the progression of oral cancer. The Long Short-Term Memory networks are selected because they have the proven property 

to model dependencies in long scopes and do not suffer from the vanishing gradient problem, which generally affects the 

traditional RNNs. LSTM's bidirectional structure is also used here to take into account, during the process, not only the past but 

also the future contexts inside the sequence of medical data. This approach is more convenient for the better understanding of the 

disease's chronological progression, so this is suitable for the predication and classification tasks involved with oral cancer 

diagnosis. The process of the LSTM network involves a cell state, Ct at each time step 't', which is updated by three main gates; 

the forget gate ft, the input gate 'it', and the output gate 'ot' are responsible for the process. These gates regulate the inflow of 

information in a network and filter out unnecessary information so that only relevant information is retained, while irrelevant 

information is discarded in the process. The forget gate determines how much it should retain or forget of the previous cell state 

and is represented via equation 8, 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑓) … (8) 

Where, Wf is the weight matrix corresponding to the forget gate, h(t−1) is the hidden state from the previous timestamp, xt is the 

input at the current timestamp step, and bf is the bias term for the process. The sigmoid activation σ makes the forget gate's output, 

ft, a vector of values between 0 and 1, meaning how much of the previous cell state to retain for the process. In parallel, the input 

gate determines which new information from the current input should be held in the cell states. 
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Figure 2. Overall Flow of the Proposed Analysis Process 

The input gate is defined via equation 9, 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑖) … (9) 

Where, Wi is the weight matrix for the input gate and bi is the associated bias. This gate works along with candidate cell state 

C~t, which is computed via equation 10. 

𝐶~𝑡 = 𝑡𝑎𝑛 ℎ(𝑊𝐶 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝐶) … (10) 

Then, using the outputs of the forget and input gates, the cell state at timestamp 't' is updated in process. The new cell state Ct is 

a combination of old cell state C(t−1), modulated by the forget gate, and the candidate cell state C~t, scaled by the input gate as 

per equation 11 

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶(𝑡 − 1) + 𝑖𝑡 ⋅ 𝐶~𝑡 … (11) 

Finally, the output gate controls the amount of cell state that should be exposed to the hidden states. This is defined via equation 

12, 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑜) … (12) 

The hidden state at timestamp 't', which is used for making predictions or passing information to the next timestamp, is calculated 

by modulating the cell state with the output gate via equation 13, 

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛 ℎ(𝐶𝑡) … (13) 

The Bi-LSTM is bidirectional in nature, enabling the model to process the input sequence in both forward and backward scopes. 

That way, the ability to learn temporal dependencies is increased since each timestamp step 't' now finds itself in a position to use 

both past and future context. The output of the Bi-LSTM for each timestamp step now becomes the concatenation of the hidden 

states of the forward and backward LSTMs via equation 14, 

ℎ𝑡(𝑏𝑖) = [ℎ𝑡𝑓𝑜𝑟𝑤𝑎𝑟𝑑; ℎ𝑡𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑] … (14) 

This bidirectional structure becomes very useful in medical applications where the disease process does not necessarily occur 

chronologically for the process. This analysis of data in both scopes captures very subtle temporal relationships that would 

otherwise be missed in the course of these operations by Bi-LSTM. For classification tasks, the Bi-LSTM model is used to 

minimize the cross-entropy loss. Therefore, equation 15 gives the predicted class probabilities P(yt ∣ ht bi) via a softmax layer 

applied directly to the hidden states, 

𝑃( 𝑦𝑡 ∣∣ ℎ𝑡(𝑏𝑖) ) = 𝜎(𝑊𝑦 ⋅ ℎ𝑡𝑏𝑖 + 𝑏𝑦) … (15) 
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Where, Wy is the weight matrix mapping the hidden states to the class probabilities, and ‘by’ is the bias term for this process. 

The loss function, L, is defined via equation 16, 

𝐿 = − ∑ ∑ 𝑦𝑡𝑘 ∗ 𝑙𝑜𝑔 𝑃(𝑦𝑡𝑘 ∣ ℎ𝑡(𝑏𝑖))

𝐾

𝑘=1

… (16)

𝑡

 

Where, ‘K’ is the number of classes, and ytk is a binary indicator for whether class ‘k’ is the correct classification for timestamp 

‘t’ sets. The justification for using a Bi-LSTM in this context lies in its ability to model sequential dependencies while maintaining 

flexibility in analyzing both past and future states. This becomes notably important in the clinical scenario as well since the time 

course of cancer progression is not strictly linear, and contextual information from both sides of the sequence might have a better 

explanatory power for prediction. The Bi-LSTM architecture structure allows for richer feature extraction from sequential data, 

adding to the static image-based features extracted from the ResNet-50 model. Together, they comprise a powerful architecture 

for predicting how oral cancer may advance, particularly in early stages, where the temporal dimension plays an essential role in 

identifying the cancer. Putting all things together, the Bi-LSTM network, careful in handling cell states, gates, and bidirectional 

processing, captures the dependencies of the data in the medical field, hence bolstering the general performance of the model in 

cancer detection. Introduced equations illustrate the dynamics of LSTM units with an information fusion procedure over time, 

which finally improves the accuracy at time for prediction in integration with other modalities in a deep learning framework. 

Finally, we analyze the efficiency of the proposed model with respect to various metrics. We also compare under various scenarios 

against existing methods. 

 

COMPARATIVE RESULT ANALYSIS 
For the experimental setup of this paper, a multiscale deep learning architecture is used to get accurate oral cancer diagnosis and 

classification results through the application of combined image and clinical text data samples. The datasets of this research are 

histopathological images of oral cancer tissues along with clinical records consisting of detailed reports of medical history, 

diagnoses, and others. For the image data, it incorporates 5,000 high-resolution histopathological images of oral tissue that are 

either labeled as "benign," "early-stage cancer," or "advanced-stage cancer." The images are further supplemented with synthetic 

samples using Conditional Generative Adversarial Networks (cGANs), which helped mitigate the issue of data imbalance by 

creating an additional set of 2,000 synthetic images for underrepresented categories, mainly early-stage cancer. This augmentation 

enhanced the strength of the dataset and heightened the sensitivity of the model, especially in the early detection of cancer. Image 

data was processed using a pre-trained ResNet-50 fine-tuned on this domain-specific dataset. Input images were resized to 

224x224 pixels. Then, they passed through ResNet-50, which outputs 2,048-dimensional feature vectors. Simultaneously to this 

process, clinical text data containing patient histories and diagnostic reports were tokenized and then processed using the BERT 

model. The BERT model is then fine-tuned using 30,000 samples of domain-specific medical text data. It outputs feature vectors 

with 768 dimensions. The two datasets are normalized, and after normalization, the text features along with the image features 

are fused to create a multimodal representation that will be helpful in classification tasks. For this study, we have used a publicly 

available dataset known as the Oral Cancer Dataset. It has been obtained from the UCI Machine Learning Repository. This dataset 

was built upon clinical and histopathological data with an objective in mind: to detect oral cancer. The dataset has 10,000 labelled 

histopathological images of tissues of cancers captured with high-resolution imaging techniques, labeled respectively as "normal", 

"pre-malignant", and "malignant" levels of the disease and it is 224x224 pixels, preprocessed, in RGB format. The dataset includes 

complete clinical features of 5,000 patients-including demographics such as age and gender, lifestyle factors like smoking and 

alcohol consumption, as well as detailed medical records like tumor stage, lymph node involvement, and treatment history. The 

study period is 15 years with multiple entries per patient to model temporal progression of oral cancer. Furthermore, it is annotated 

by hand in reports, hence applied to both models of image-based deep learning models and natural language processing models. 

To date, this dataset has been pretty well exploited by the medical research community and can be described as a true cornerstone 

for multimodal training to improve the early detection and prognosis of cases related to oral cancers.  

 

In addition to the image and text components, it has relied on temporal progression information to learn the dependencies in 

patient history over time. A Bi-LSTM network allows it to process a sequence of medical records of 1,000 patients with follow-

up information for at least 10 years per patient. It captures how the clinical variables of the size of the tumor, lymph nodes, and 

treatment responses evolve with time. The input to Bi-LSTM comprises sequential data points with an intensity of 50 clinical 

features, which might include age, stage of tumor, and types of treatment received, and the number of sequence steps varies 

between 10 and 20 timestamp steps for different patients on account of patient records availability. The size of Bi-LSTM in the 

case of hidden is set to 512 and is trained using 0.001 with Adam Optimizer during 100 epochs. Using the complete model that 

is comprised of ResNet-50 for image feature extraction, BERT for extracting text features, Bi-LSTM for extraction of temporal 

dependencies, and cGANs for augmentation of the data, the experiments were performed on a workstation equipped with an 

NVIDIA Tesla V100 GPU, 32GB of memory, and CUDA-accelerated libraries for deep learning. Classification ability is 

determined based on a variety of criteria, which include accuracy, precision, recall, F1-score, and area under receiver operating 

characteristic (ROC) curves. This multimodal, multi-input system utilizes strengths of each component towards acquiring high 

classification accuracy for improved early-stage cancer detection-accomplished to have an overall classification accuracy of 95% 

with a reduction of 10% in false negatives within cases of early-stage cancer. Results from the experimental evidences 

demonstrate the proposed multimodal framework to outperform the existing approach towards the detection of oral cancer, 

especially at early stages. The model was tested using the Oral Cancer Dataset (OCD), and the findings are reported for 

comparison with three other well-established methods: Method [5], Method [8], and Method [15]. Detailed comparisons of 

classification accuracy, sensitivity, specificity, F1-score, and false negative rates of different experimental settings are presented 
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in following tables that provide an all Inclusive understanding of the detection capability of the model process. 

 

 
Figure 3. Overall Performance of the Proposed Cancer Detection Process 

 

Table 2 and figure 3 Compare the classification accuracy between the proposed model and other methods in respect to different 

stages of cancer detection. The proposed model demonstrates overall strong improvements for early-stage cancer detection due 

to combination of image and clinical text features. Also, the data augmentation using cGANs results in a well-balanced set which 

improves the overall accuracy. 

 

Table 2. Classification Accuracy of proposed model. 

Method Overall Accuracy (%) Early-Stage Accuracy (%) Advanced-Stage Accuracy (%) 

Method [5] 85.1 72.5 91.2 

Method [8] 88.3 75.6 92.0 

Method [15] 89.0 76.3 92.5 

Proposed 95.0 88.0 96.5 

 

In Table 2, the proposed model presents an overall classification accuracy of 95% and significant improvement in cancer within 

the early stages at 88%. This is an important boost above the rest of the methods, but particularly for early detection, which is 

critical to improving patient outcomes. Table 3 illustrates a comparison of sensitivity (recall) for the respective models. Sensitivity 

is an important metric, especially for medical diagnosis. It represents the ability of the model to get it right in identifying positive 

cases-cancer patients. 

Table 3. Sensitivity of the proposed model. 

Method Sensitivity (%) Early-Stage Sensitivity (%) Advanced-Stage Sensitivity (%) 

Method [5] 81.3 68.9 85.7 

Method [8] 84.7 71.4 87.5 

Method [15] 86.2 73.1 89.0 

Proposed 92.5 83.0 94.8 

 

In Table 3, sensitivity of the proposed model, especially in the detection of early-stage cancers, is at 83%, which is 10-15% better 

than the competing methods. High sensitivity implies fewer missed diagnoses, thus very valuable in a clinical setup. Table 4 

provides the specificity values that are metrics representing the strength of the model to call cases that are indeed negative, or 

non-cancerous patients. High specificity is important to reduce the rate of false positives. 

 

Table 4. Specificity of the proposed model. 

Method Specificity (%) Early-Stage Specificity (%) Advanced-Stage Specificity (%) 

Method [5] 87.2 79.0 90.8 

Method [8] 89.5 81.2 91.5 
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Method [15] 90.3 82.1 92.0 

Proposed 94.0 86.5 95.3 

 

As depicted in Table 4, the model proposed is at 94% specifically, showing that it is robust in its ability to correctly identify the 

cancer noncases and actual cases. This is very profound in preventing patient over-exposure to unnecessary biopsies or invasive 

procedures due to the failed diagnosis from this model. In Table 5, a comparison of the F1-score has been developed for the 

process. It is the harmonic mean of sensitivity and precision and is helpful in the assessment of both recall and precision of the 

model. 

Table 5. F1-Score of the proposed model. 

Method F1-Score (Overall) F1-Score (Early-Stage) F1-Score (Advanced-Stage) 

Method [5] 82.6 70.4 88.3 

Method [8] 85.3 73.2 89.6 

Method [15] 87.1 74.6 90.7 

Proposed 93.2 85.0 95.6 

 

It can be seen from Table 5 that the proposed model reaches a high F1-score across all categories at 93.2%. There is a huge early-

stage F1-score improvement showing a balanced performance of the model in cancer detection at early stages while still having 

high precision. The false-negative rate (FNR), shown in Table 6, represents one of the significant measures for evaluating how 

many cancer cases have been missed by the model. Lower false-negative rates are important to bring about improvements in 

survival, particularly for early-stage cancers. 

Table 6. FNR of the proposed model. 

Method False-Negative Rate (%) Early-Stage FNR (%) Advanced-Stage FNR (%) 

Method [5] 18.7 31.1 14.3 

Method [8] 15.3 28.6 12.5 

Method [15] 13.8 26.9 11.0 

Proposed 7.5 17.0 5.2 

In Table 6, it can be noted that the proposed method has an extremely high decline in FNR with an overall average FNR of 7.5% 

and an early stage FNR of 17%, which is substantially lower compared to other approaches. Thus, more cancer cases are not 

missed in this approach so that the timely intervention process may take place. From Table 7, the AUC-ROC discussed here 

corresponds to the class for which one tries to compare the performance of the proposed model at different classification threshold 

levels. 

Table 7. Overall AUC-ROC Score of the proposed model. 

Method AUC-ROC (Overall) AUC-ROC (Early-Stage) AUC-ROC (Advanced-Stage) 

Method [5] 0.87 0.76 0.90 

Method [8] 0.89 0.78 0.92 

Method [15] 0.91 0.80 0.93 

Proposed 0.96 0.89 0.98 

 

Table 7. The presented model enhances the overall AUC-ROC score up to 0.96. Significant improvement in early-stage detection, 

using an AUC-ROC of 0.89, indicates that the model is robust with variations in classification thresholds for distinguishing 

between early-stage versus advanced-stage cancer case distinctions. The results clearly show that the proposed multimodal model 

has better results in the detection of oral cancer in comparison to other methods, especially in the critical task of identifying early-

stage cancer cases across all tables. The contributions made by ResNet-50, BERT, Bi-LSTM, and cGANs make up for this 

significant improvement in accuracy, sensitivity, and false-negative rates thus providing a comprehensive solution for the 

detection of cancer early and accurately. We now develop an iterative visual practical usage case of the proposed model, which 

will better guide readers through the entire process. 

 

Practical Use Case Scenario Analysis 

To elaborate on the entire process explained in this paper, we shall use an example with sample values to illustrate the outputs 

that have resulted from the BERT model, cGANs with a pre-trained ResNet-50, and also the Bi-LSTM network. The final outputs 

from the multimodal fusion model are also presented in these results, demonstrating the capacity to merge several kinds of data 

and their modalities. These indicate that it can process and fuse images, texts, and temporal information for the detection and 

classification of oral cancer. For practical use case analysis, we have sampled patient cases and selected several clinical entities 

from the OCD, which holds images with histopathological data and includes comprehensive clinical records. The dataset consists 

of 5,000 unique patient samples, each covering all stages of oral cancer, from benign to very advanced. Each patient sample is 

provided with the images of oral tissue at a relatively high resolution and labeled by the level of severity of cancer, along with 

the longitudinal clinical data - for example, tumor size, lymph nodes' involvement, treatment history. This, in effect actually 

merges each patient's clinical text records comprising diagnostic reports, treatment summaries, and follow-up outcomes which 

are also processed to extract important clinical entities as "tumor stage," "treatment type," "patient outcome," and "disease 

progression." The above patients, with this early-stage diagnosis of cancer, are annotated clinically to have smaller tumor sizes 

such as less than 2 cm and indicated through initial surgical interventions, while those diagnosed as advanced stage are mostly 

described with larger tumor sizes, higher aggressive treatment, such as chemotherapy or immunotherapy and having more 

frequent follow-ups. All these image and clinical text entities can then be subjected to strong multimodal analysis for the early 

detection and more accurate prediction of disease progression. Clinical text data, mainly deriving from patient history, diagnostic 

reports, and other relevant medical annotations, is then fed into the BERT model to produce the feature vectors. Each input in 
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this process is first tokenized and then subjected to contextualized embeddings creation for each token. The following is a table 

showing only sample values for clinical text inputs, their corresponding tokenized words, and feature vectors generated by BERT. 

 

Table 8: BERT Model Output for Clinical Text Input 

Clinical Text Input Tokenized Words BERT Feature Vector (768-

dim) 

"Patient shows signs of leukoplakia" [Patient, shows, signs, of, leukoplakia] [0.23, -0.11, 0.45, ..., 0.35] 

"Biopsy confirms squamous cell 

carcinoma" 

[Biopsy, confirms, squamous, cell, 

carcinoma] 

[0.12, 0.45, -0.30, ..., -0.25] 

"Lesion size increased to 2 cm" [Lesion, size, increased, to, 2, cm] [-0.34, 0.56, 0.21, ..., 0.42] 

"No lymph node involvement detected" [No, lymph, node, involvement, detected] [0.15, -0.27, 0.33, ..., -0.09] 

 

Using BERT, the resultant output feature vectors generated an enhanced semantic understanding of clinical data such that each 

feature vector was a 768-dimensional embedding that could be used for further multimodal fusion. The cGANs were used to 

generate synthetic histopathological images that would enhance the dataset and fill in the gap between early-stage and advanced 

stages of cancer cases. Table for extracted high-dimensional image features from the real & synthetic images & samples. 

 

Table 9: cGANs with Pre-Trained ResNet-50 Image Feature Extraction 

Image ID Image Type ResNet-50 Feature Vector (2048-dim) 

Image_001 Real [0.12, -0.54, 0.33, ..., 0.89] 

Image_002 Synthetic [-0.23, 0.15, -0.67, ..., 0.54] 

Image_003 Real [0.44, 0.23, -0.22, ..., -0.12] 

Image_004 Synthetic [0.36, -0.13, 0.77, ..., -0.25] 

Image_005 Real [-0.12, 0.11, -0.43, ..., 0.67] 

Image_006 Synthetic [0.09, -0.56, 0.34, ..., -0.33] 

ResNet-50 model fine-tuned on the cancer-specific data. Therefore, it extracts the high-dimensional features of images & samples 

both from real and synthetic types. The input in the multimodal fusion layer is through the extracted image features which consist 

of 2048-dimensional vectors to combine and classify the visual and textual information for cancer. The Bi-LSTM network 

captures the temporal dependencies from sequential clinical records. It processes time-series data of each patient. Every timestamp 

step comprises clinical features, including tumor size, type of treatment, and follow-up outcomes. The table below displays the 

input features of sequential data and the output of the Bi-LSTM network in terms of hidden states at each timestamp sets. 

 

Table 10: Bi-LSTM Network Output for Temporal Dependencies 

Time Step Input Clinical Features (Tumor Size, Treatment, Outcome) Bi-LSTM Hidden State (512-dim) 

t1 [1.2 cm, Surgery, Stable] [0.21, -0.34, 0.56, ..., 0.14] 

t2 [1.8 cm, Radiation, Progressing] [-0.12, 0.45, 0.33, ..., -0.21] 

t3 [2.0 cm, Chemotherapy, Progressing] [0.34, 0.21, -0.11, ..., 0.05] 

t4 [2.5 cm, Immunotherapy, Stable] [-0.22, 0.56, -0.45, ..., 0.34] 

t5 [2.7 cm, Follow-up, Stable] [0.45, -0.11, 0.78, ..., -0.12] 

 

The hidden states can be treated as the contextual representation of clinical data over temporal instance sets:. These outputs are 

very crucial in the capture of the evolution of cancer, enabling the prediction of how diseases will progress. After processing the 

image, text, and temporal data through their respective networks, the final multimodal feature vectors are fused in process. The 

classification layer then processes these fused features and finally outputs the predicted cancer stages. Given below are the final 

outputs for each patient that include the fused feature vector and the predicted class labels. 

 

Table 11: Final Model Outputs 

Patient ID Fused Feature Vector (Mixed Dimensionality) Predicted Class (Benign, Early-Stage, Advanced-

Stage) 

Patient_001 [0.12, 0.45, -0.67, ..., 0.34] Early-Stage 

Patient_002 [-0.23, 0.56, 0.89, ..., -0.12] Advanced-Stage 

Patient_003 [0.34, 0.11, -0.22, ..., 0.45] Benign 

Patient_004 [0.77, -0.13, 0.33, ..., 0.23] Early-Stage 

Patient_005 [-0.11, 0.22, 0.78, ..., -0.56] Advanced-Stage 

 

Here are the fused feature vectors for multimodal integration of image, text, and temporal data samples. The proposed model 

carries out cancer stage classification for patients very precisely and sensitively. Therefore, the processing of various data 

modalities in step-by-step mode with incorporation of feature vectors well describes the efficiency of the proposed framework, 

deep learning model toward early detection and proper classification of oral cancer. The result portrays the significant 

improvement in predictive capability of the model with the inclusion of multimodal data fusion process. 

 

CONCLUSION & FUTURE SCOPES 

This work introduces the innovative concept of using a multimodal deep learning framework for the early detection and 
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classification of oral cancers, which utilizes advanced image analysis using the pre-trained ResNet-50 model, processing clinical 

text via BERT, modeling temporal data using Bi-LSTM, and data augmentation through cGANs. The model achieved an overall 

accuracy of 95% with the most impressive gain being in early-stage cancer, reaching an accuracy of 88%, while all competing 

methods reached a rate between 72.5% and 76.3%. Thus, it was apparent that the main contribution here was regarding the fused 

multimodal data for combining both histopathological images and clinical text data with the aim of providing a higher form of 

integration and apprehension of the progression of the disease. These longitudinal patient records also provide the Bi-LSTM 

network with better capture of temporal dependencies, thereby increasing the model's predictive accuracy for cancer progression 

to raise sensitivity even to an early cancer detection of about 83%. The addition of cGANs, in which class imbalance at the 

intrinsic level was addressed through synthesizing the under-represented images of cancers, increased the model's robustness, 

reducing the false-negative rate from 31.1% achieved in Method [5] up to 17% for early-stage cancers. These results demonstrate 

the superiority of this proposed method over the classic simple modality approach in terms of the early detection of cancers that 

are typically harder to identify by a process. The improvements in accuracy, sensitivity, and false negatives show strong evidence 

for its potential clinic utility, particularly in high-risk patients. 

Future Scope: 

However, there exist many promising ways of future work and improvement. For instance, the dataset could be extended to more 

types of sub-cancer subtypes and demographics, hence improving the generalisability of the model. However, the developed 

model shows a tremendous improvement in cancer detection at early stages. Yet further enhancement could be done by refining 

the architecture of Bi-LSTM and adding more sophisticated temporal models, such as attention mechanisms, to capture long-term 

dependencies in patient data samples. Further experiment could be done with other transfer learning models, like EfficientNet or 

Vision Transformers (ViT), which may improve the extraction of image features, especially for complex and heterogeneous types 

of cancer. Another improvement area is data augmentation using refined cGANs. While the current architecture of cGANs 

minimized the rate of false negatives, the integration of advanced GAN variants, such as StyleGAN or progressive growing 

GANs, can help to produce more realistic synthetic images, thus further improving the robustness of models. This framework can 

be readily extended to real-time clinical applications too, where the integration of this framework would become one of decision 

support systems ready for the pathologists and oncologists, enabling early and accurate diagnosis through interactive software 

tools. The job of fine-tuning the computational effectiveness of the model has to be taken up further, especially in clinical settings, 

wherein quickness in calculation will be a very important factor. Future work would include the federated learning of securely 

training the model across different healthcare institutions, where patient details would remain private, while the model was further 

enhanced through distributed learning on a variety of different datasets & samples. 
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