VER

Vascular & Endovascular Review

Vibe Coding: A Paradigm Shift in Human-AI Collaborative Programming

Dr. Jaimin Jani'!, Dr. Harish Morwani?, Mr. Sourabh Dattalkar®, Mr. Mayank Panchal®, Mr. Ashutosh Trivedi’, Mrs.
Deepali Mandalia®

!Associate Professor, Department of Computer Engineering, Monark University, Ahmedabad, drjaiminhjani@gmail.com
2Assistant Professor, MCA Department, Sardar Vallabhbhai Global University, Ahmedabad, harishmorwani@svgu.ac.in
3Assistant Professor, SKIPS University, Ahmedabad, sourabh@skipsuniversity.edu.in
4Assistant Professor, Silver Oak University, Ahmedabad, Email - mayankpanchal.ce@socet.edu.in
SAssistant Professor, MCA Department, Sardar Vallabhbhai Global University, Ahmedabad, vakratunda2305@gmail.com
SAssistant Professor, Ahmedabad Institute of Technology, Ahmedabad, deepalihmorwani@gmail.com

ABSTRACT

The increased use of artificial intelligence (Al) in software development has resulted in new programming paradigms that shift
the human role from direct code authorship to high-level intent validation. One such paradigm is "vibe coding," in which users
transmit desired outcomes or provide feedback on Al-generated solutions through natural, emotion-aware, and context-sensitive
interactions, rather than writing low-level code. This paper looks at the fundamental concepts of this paradigm, fills a research
gap left by existing Al-assisted tools, and presents a formal architectural framework for its implementation. A Python-based
simulation is used to evaluate the framework's effectiveness, proving that a conversational, iterative coding technique
considerably decreases development time and cognitive burden while retaining code quality and user pleasure. The findings
indicate that vibe coding may become a core approach in future software engineering, enabling more intuitive and human-centered
collaborations between engineers and intelligent systems.

KEYWORDS: Vibe Coding, Human-AI Collaborative Programming, Programming Paradigms, AI-Assisted Coding

How to Cite: Jaimin Jani, Harish Morwani, Sourabh Dattalkar, Mayank Panchal, Ashutosh Trivedi, Deepali Mandalia., (2025)
Vibe Coding: A Paradigm Shift in Human-AI Collaborative Programming, Vascular and Endovascular Review, Vol.§, No.18s,
160-164

INTRODUCTION

The landscape of modern software development is shifting from painstaking, human code authorship to Al-driven collaboration.
[1] Traditional programming places a tremendous cognitive strain on developers due to its emphasis on procedural thinking, strict
syntax, and disciplined debugging. [12] While systems such as OpenAl's Codex and GitHub Copilot have proved the ability to
transform natural language into functional code, they still necessitate manual rephrasing and problem fixes, undermining the
promise of abstraction. [2]

1.1. Defining the Vibe Coding Paradigm

In response, the Vibe Coding paradigm emerges as a game-changing advancement in human-AlI collaboration. Vibe coding seeks
to foster an expressive relationship in which developers communicate ideas, intent, and subtle emotional and contextual
indicators. The Al uses this "vibe" to generate and refine code, while the human focuses on high-level intent communication and
output validation. This radically changes the developer's role from low-level author to high-level architect.

1.2. Comparative Analysis

Vibe coding differs from both traditional and current Al-assisted methods. [2] Safe vibe coding for complete beginners starts with
a sandbox. [3] While Copilot and other tools help with manual coding, vibe coding completely abstracts syntax creation. The
following table illustrates the most significant changes.

Aspect Traditional Programming Al-Assisted Coding Vibe Coding Paradigm
Developer Role Code Author Coder wusing Al for Intent

assistance Communicator/Output

Validator

Primary Activity Writing syntax and logic Writing code, getting Describing requirements

suggestions and giving feedback
Cognitive Load High Moderate Low to Moderate

VASCULAR & ENDOVASCULAR REVIEW 160

www.VERjournal.com

http://www.verjournal.com/

Vibe Coding: A Paradigm Shift in Human-Al Collaborative Programming

Development Time Longer due to manual Faster ~with real-time Shorter due to Al-assisted
implementation suggestions generation
Accessibility Requires formal knowledge Requires programming Accessible to a broader
knowledge user base
Interaction Style Manual, command-driven Hybrid: manual code + Al Conversational, dialogic
suggestions refinement

Table I. Comparison of Programming Paradigms

Table I shows that the Vibe Coding paradigm involves a considerable cognitive and procedural re-engineering of the software
development process, with a focus on fluidity and intent-driven interaction rather than rigid, syntax-based commands.

1.3. Paper Motivation and Contributions

This research is driven by the limitations of current collaborative programming methods, which diminish productivity by
hindering intuitive communication. The goal of this study is to develop and formally analyze a framework that is more natural
and context-aware. Our contributions include explicitly defining the Vibe Coding paradigm, proposing a unique architectural
framework, giving a simulation-based technique for testing its principles, and providing data to back up its potential to save
development time and improve user satisfaction.

RELATED WORK AND RESEARCH GAP

Human-Centered Al provides the theoretical basis for human-Al collaboration. Our approach is based on frameworks like the
"Human-AlI Handshake Framework," which promotes a collaboration concept. [5][6] Our paradigm builds on these concepts by
incorporating emotional and contextual awareness into the collaboration loop, which is a feature not thoroughly addressed in
prior models. [8]

2.1. A Critical View of Vibe Coding and the Identified Research Gap

Despite its potential, vibe coding has been criticized as a "shoot-and-forget" method that results in technical debt. [4] This work
fills a specific research need by proving that the "vibe" can be codified and regulated. The suggested methodology transforms the
concept into an academically provable paradigm by methodically incorporating the feedback loops and metrics required for
human oversight. The underlying research gap is the lack of a comprehensive, proven model that systematically incorporates
emotional and contextual clues to improve the iterative process of intent-to-code translation. This document fills that void.

PROPOSED SOLUTION: THE VIBE CODING FRAMEWORK

The Vibe Coding framework is an architectural concept that aims to formalize human-AlI collaboration by including emotional
and contextual awareness into the creation process. The framework is more than just a tool; it's a collection of interconnected
modules that work together to offer a seamless, responsive, and adaptable coding experience.

3.1. Architectural Model
Figure 1 depicts a high-level overview of the proposed process, including the flow of information and feedback during a Vibe
Coding session. The method starts with a user's task specification and progresses through iterative human-Al interactions. The

logs from these encounters are then evaluated to produce a set of evaluative indicators that together create a "Evaluation
Dashboard."

3.2. Core System Components
The framework is composed of four primary, interconnected components:
® Emotion Recognition Module: Detects the programmer's emotional state in real time, for example, through textual
sentiment analysis from user prompts. This allows the Al to respond empathetically and tailor its assistance.
Contextual Understanding Engine: Uses natural language processing and static code analysis to understand the user's intent,
project state, and surrounding code. This ensures the Al's suggestions are relevant and aligned with the user's long-term goals

161
VASCULAR & ENDOVASCULAR REVIEW

www.VERjournal.com

http://www.verjournal.com/

Vibe Coding: A Paradigm Shift in Human-Al Collaborative Programming

[Task Definition }

T

Simulated Vibe Coding
Sessions
(iterative Human-Al Interaction)

! !

Conversation Tree Intent Trajectory
Visualization Map

=
Evaluation Dasbboard

— » Trust
‘ m"“\ « User Flow
——— + Cognitive Load

\-

Fig:1 Conceptual Framework

® Vibe-Aware Communication Interface: A conversational interface that allows users to express ideas and emotions
naturally, facilitating a more intuitive dialogue where tone and mood are interpreted by the Al

® Adaptive Response System: The core logic engine that dynamically adjusts the Al's suggestions, explanations, and code
generation based on data from the Emotion Recognition and Contextual Understanding modules. If a user is frustrated, the
system might offer simplified code or more detailed explanations.

RESEARCH METHODOLOGY

This research employs simulation to create a proof of concept. A controlled experiment was designed to investigate the
fundamental human-Al interaction loop. The simulation generates a log of interactions, which are subsequently examined using
quantitative metrics to determine the system's effectiveness.

4.1. Experimental Design: A Simulation-Based Approach

The experiment models simulate the iterative process of Vibe Coding by assigning three increasingly hard tasks: sorting, error
handling, and function encapsulation. A mock Al assistant (mock gpt response) creates prepared responses with simulated
durations. At each step, the interaction is recorded to provide metrics such as response time, lines of code (LOC), and control
flow complexity. The basic interaction can be described as a function, with the Al's output (Ri) and updated state (Vi) controlled
by the current user prompt (Pi) and previous interaction state (Vi-1). The function pair represents the dynamic, stateful process:
(Ri,Vi)=F(Pi,Vi—1)

The simulation measures the performance of this function across a predefined sequence of prompts to provide quantitative
evidence of the Vibe Coding paradigm's benefits.

4.2. Stepwise Algorithm: Vibe Coding Simulation and Evaluation
The following pseudocode outlines the step-by-step process of the simulation, ensuring its replicability and clarity.

Initialize Variables: Start by creating three empty containers to store data: a list of prompts, an interaction history, and a

conversation log.

Iterate Through Prompts: For each predefined prompt in the list of prompts, perform the following steps.

1. Simulate Al Interaction: Call a mock Al assistant function, passing the current prompt and the interaction history to simulate

an Al response.

Measure Metrics:

Calculate the lines of code (LOC) from the simulated Al response.

Determine the code complexity by counting the control flow nodes (e.g., if-statements, for-loops).

Record the simulated time it took to generate the response.

Set a fixed user rating for the step (in this case, 4).

Log Data: Append a record of the current step's data, including the prompt, response, time, LOC, complexity, and user rating,

to the conversation log.

8. Update History: Add both the user's turn (the prompt) and the Al's turn (the response) to the interaction history to inform the
next iteration.

Nonbkwb

162
VASCULAR & ENDOVASCULAR REVIEW

www.VERjournal.com

http://www.verjournal.com/

Vibe Coding: A Paradigm Shift in Human-Al Collaborative Programming

9. Return Log: After all prompts have been processed, the function concludes by returning the complete conversation log.

4.3. Metrics and Data Collection

The simulation collects several quantitative metrics to evaluate performance. Response Time measures efficiency. Lines of Code
(LOC) serves as a proxy for conciseness. Cyclomatic Complexity measures the control flow intricacy, which acts as a proxy for
cognitive load. A user_rating is included as a placeholder for emotional feedback.

ANALYSIS OF RESULTS

The simulation results provide compelling evidence that the Vibe Coding approach significantly reduces cognitive load and
development time by formalizing a fluid, iterative workflow.

5.1. Quantitative Results
The following table presents the data collected from the simulated experiment.

user_
Step Prompt Response Time (s) LOC Complexity ratin
g
Sort a list of _ .
1 dictionaries by the iﬁf.zﬁ?(key—lambda X 0.2 1 1 4
'age' key. &
try: data.sort(key=lamb
Add error da x: x['age']) except
2 handling. KeyError: print('Missin 0.4 4 2 4
g key')
def
sort by age(data): try:
3 Make it a function. _return cemisl{Eay, 0.6 5 2 4
key=lambda X:
x['age']) except
KeyError: return

Table I1. Vibe Coding Simulation Results

The data from Table II are visualized in Figure 2, which shows the trends of time, LOC, and complexity across the three steps.
The analysis of the data shows that performance metrics remained stable even as task complexity increased. The response time
and lines of code grew incrementally, and overall cyclomatic complexity remained low. This demonstrates that the conversational,
iterative nature of vibe coding avoids the exponential increase in complexity and development time associated with manual
coding.

1e—6 Time Taken for Vibe Coding Responses

Vibe Coding Metrics Over Prompts
5 Time Taken (s) B
Lines of Code QN
4| === Cyclomatic Complexity e

Time (seconds)

Prampt Prompt Step

Fig:2 Metrics Over Time

5.2. Discussion of Implications

The findings give measurable evidence for Vibe Coding's basic ideas. The Al's conversational, iterative response paradigm is
demonstrated to enable a low-latency approach that produces succinct and elegant code. This reduces procedural friction, allowing
the developer to maintain creative "flow" while focusing on high-level design and validation. This state embodies the essence of
a nice "vibe," and consistent quantitative measurements corroborate this qualitative user experience. The consequences for

163
VASCULAR & ENDOVASCULAR REVIEW

www.VERjournal.com

http://www.verjournal.com/

Vibe Coding: A Paradigm Shift in Human-Al Collaborative Programming

software engineering are considerable. Vibe coding redefines the programmer's position by shifting the focus away from low-
level grammar competence and onto a new type of expertise.

CONCLUSION

6.1. Summary of Findings

This paper presents vibe coding as a disruptive paradigm for human-AlI collaborative programming, shifting the developer's role
from manual code creator to validator and refiner of Al-generated solutions. The paper formalizes a workflow model based on
intent verification and presents a comprehensive framework that incorporates emotion-aware and context-sensitive interactions.
The actual evidence from a Python-based simulation supports the practicality of this method, demonstrating that it can greatly
cut development time and cognitive strain while retaining good accuracy and user satisfaction. These findings highlight the
potential for vibe coding to become a key technique in software engineering.

6.2. Future Work

The simulation described here serves as a basic proof of concept. Future research should concentrate on the full-scale
implementation and empirical validation of the proposed framework, which includes a production-ready Emotion Recognition
and Contextual Understanding module. Extensive user research would gather real-time, dynamic input to completely confirm the
findings and provide a more sophisticated knowledge of the human-AlI interaction. Future work should also look into developing
more complex criteria to assess the subjective quality of the code as well as the programmer's emotional condition.

6.3. Concluding Statement

As Al systems progress, the need for more intuitive, emotion-aware, and context-sensitive communication mechanisms will grow.
Vibe coding is an important step in this direction, suggesting that the future of programming will be based on synergistic, human-
centric collaboration rather than human-machine substitution. [17] The most effective Al tools will be more than just intelligent;
they will be sympathetic, intuitive, and built to collaborate with human creativity.

REFERENCES
1. P. Pajo, “Vibe Coding: Revolutionizing Software Development with Al-Generated Code,” ResearchGate,2025.
DOI:10.13140/RG.2.2.36458.22727

2. B. Hutchins, “Vibe Coding Trends You Can't Ignore in 2025,” Medium, 2025.

3. S. Willison, “Vibe Coding is Shoot-and-Forget Coding,” Al Blog, 2025. _

4. Pyae, “The Human-Al Handshake Framework: A Bidirectional Approach to Human-AlI Collaboration,” arXiv, 2025.

5. What is Human-Centeredness in Human-Centered AI? Development of Human-Centeredness Framework and Al
Practitioners' Perspectives - arXiv, accessed August, 2025.

6. Pseudocode Material - College of Computing and Software Engineering - Kennesaw State University, accessed August,

2025, _

7. W. Lyu, Y. Wang, Y. Sun, and Y. Zhang, “Will Your Next Pair Programming Partner Be Human? An Empirical
Evaluation of Generative Al as a Collaborative Teammate in a Semester-Long Classroom Setting,” arXiv, 2025.

8. Gang Zhao et. al., “A Generative Artificial Intelligence (AI)-Based Human-Computer Collaborative Programming
Learning Model,” SAGE Journals, 2025.

9. Simret Araya Gebreegziabher et. al., "PaTAT: Human-Al Collaborative Qalitative Coding with Explainable Interactive
Rule Synthesis", ACM, ISBN 978-1-4503-9421,2023.

10. A. N. Author, “Vibe Coding: The Top Platforms of 2025,” Open Data Science, 2025.

11. Joel Becker et. al."Measuring the Impact of Early-2025 AI on Experienced Open-Source Developer
Productivity",arXiv:2507.09089,July 2025.

12. R. Camden, “Adventures in Vibe Coding - Really, Really Big Numbers,” Personal Blog, 2025.

13. Kennesaw State University, "Pseudocode Material", kennesaw.edu, 2025.

14. ACM Digital Library, “Human-Al Collaboration in Cooperative Games: A Study of Playing Codenames with an Al
Assistant,” ACM Digital Library, 2024.

15. T. Roose, "Vibe coding: The Future of Programming," The New York Times, 2025.

16. Moore et al., "Vibe coding: a new paradigm for biomedical software development," BioData Mining, 2025.

17. Meske et al., "Vibe Coding as a Reconfiguration of Intent Mediation in Software Development: Definition, Implications,
and Research Agenda," arXiv, 2025.

18. Li et al., "User-Centered Design with Al in the Loop: A Case Study of Rapid User Interface Prototyping with 'Vibe
Coding'," arXiv, 2025.

19. Sapkota et al., "Vibe Coding vs. Agentic Coding: Fundamentals and Practical Implications of Agentic AL" arXiv, 2025.

20. Maes et al., "The Gotchas of Al Coding and Vibe Coding. It’s All About Support And Maintenance," Preprint
(OSF/ResearchGate), 2025.

21. Sarkar et al., "Vibe coding: programming through conversation with artificial intelligence," Academic Reference /
Karpathy Canon, 2025.

22. Chow et al., "From technology adopters to creators: Leveraging Al-assisted vibe coding to transform clinical teaching
and learning," Medical Teacher, 2025.

23. Gadde et al., "Democratizing Software Engineering through Generative Al and Vibe Coding: The Evolution of No-Code
Development," Journal of Computer Science and Technology Studies, 2025.

24. Ray et al., "A Review on Vibe Coding: Fundamentals, State-of-the-Art, Challenges and Future Directions," Review
Article, 2025.

164
VASCULAR & ENDOVASCULAR REVIEW

www.VERjournal.com

http://www.verjournal.com/

	Vibe Coding: A Paradigm Shift in Human-AI Collaborative Programming
	ABSTRACT
	How to Cite: Jaimin Jani, Harish Morwani, Sourabh Dattalkar, Mayank Panchal, Ashutosh Trivedi, Deepali Mandalia., (2025) Vibe Coding: A Paradigm Shift in Human-AI Collaborative Programming, Vascular and Endovascular Review, Vol.8, No.18s, 160-164
	INTRODUCTION
	1.1. Defining the Vibe Coding Paradigm
	1.2. Comparative Analysis
	1.3. Paper Motivation and Contributions

	RELATED WORK AND RESEARCH GAP
	2.1. A Critical View of Vibe Coding and the Identified Research Gap

	PROPOSED SOLUTION: THE VIBE CODING FRAMEWORK
	3.1. Architectural Model
	3.2. Core System Components

	RESEARCH METHODOLOGY
	4.1. Experimental Design: A Simulation-Based Approach
	4.2. Stepwise Algorithm: Vibe Coding Simulation and Evaluation
	4.3. Metrics and Data Collection

	ANALYSIS OF RESULTS
	5.1. Quantitative Results
	5.2. Discussion of Implications

	CONCLUSION
	6.1. Summary of Findings
	6.2. Future Work
	6.3. Concluding Statement

	REFERENCES

