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ABSTRACT 

The demand for rapid, cost-effective, and precise diagnostic instruments for chest-related conditions, including COVID-19 and 

pneumonia, has become more pressing in the aftermath of the COVID-19 pandemic. Despite the remarkable results that deep 

learning-based approaches have achieved, they frequently necessitate large annotated datasets, substantial computational 

resources, and a lack of interpretability. In contrast, this study suggests a low-cost hybrid machine learning-based diagnostic 

framework that classifies cases into three categories: Normal, Pneumonia, and COVID-19, based on interpretable features 

extracted from chest X-ray images. In order to quantify structural complexity, texture variability, and edge information, three 

critical features—Fractal Dimension, Entropy, and Edge Density—were extracted from each image. The statistical analysis of 

ANOVA confirmed that all three features exhibited significant variation among the three classes (p < 0.005). This was further 

substantiated by the visual separability demonstrated by boxplots. The machine learning classifier was trained using the extracted 

features, resulting in an overall accuracy of 77.13 percent. The model was notably effective in distinguishing between Pneumonia 

(F1- score: 0.84) and Normal (F1-score: 0.64). However, the classification of COVID-19 (F1-score: 0.53) exhibited some overlap 

with Pneumonia. The ROC curves demonstrated a robust discriminative capacity, with AUC values of 0.87 for Normal, 0.84 for 

COVID-19, and 0.82 for Pneumonia. This method is interpretable and lightweight, and it offers a cost- effective solution for the 

preliminary diagnosis of pulmonary disease. Additionally, it establishes a solid foundation for future improvements that will 

incorporate more complex features and models.  
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INTRODUCTION 
The global COVID-19 epidemic has made it even more important to have quick, reliable, and cheap diagnostic techniques for 

respiratory disorders. Chest X-ray (CXR) imaging is now an important tool for initial screening and illness surveillance because 

it is widely available and inexpensive. However, interpreting CXRs by hand can take a long time, be subjective, and differ from 

one radiologist to the next. This has made more people interested in computer-aided diagnostic (CAD) systems to help doctors 

make decisions. 

 

The automatic classification of medical images with high accuracy has been made possible by recent advancements in deep 

learning. However, these methods frequently necessitate substantial computational capacity, large volumes of annotated data, and 

frequently a lack of interpretability—a critical requirement for healthcare applications. Additionally, black-box models may 

present obstacles to clinical adoption, particularly in environments where transparency and explainability are essential. 

 

In order to overcome these constraints, we suggest a hybrid machine learning-based diagnostic pipeline that prioritises 

interpretability, simplicity, and minimal computational cost. Our approach employs handcrafted statistical and structural features 

that are computationally efficient and straightforward to interpret, rather than complex deep neural networks. In particular, we 

extract three critical features from chest X-rays: Fractal Dimension (FD) to characterise spatial texture and transitions, Shannon 

Entropy to reflect image randomness or information content, and Edge Density to capture structural complexity. Conventional 

machine learning classifiers, including logistic regression and decision trees, are trained using these features, which are 

statistically analysed for their discriminative power. 

 

The objective of this investigation is to illustrate that a combination of classical machine learning algorithms and interpretable, 

biologically pertinent features can produce reliable diagnostic performance for the differentiation of Normal, COVID-19, and 

Pneumonia cases. The framework that has been proposed is particularly well- suited for resource-constrained environments where 

the deployment of large-scale AI systems is not feasible and where decision support must be both rapid and comprehensible. 
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LITERATURE REVIEW 
The use of chest X-ray imaging for COVID-19 and pneumonia detection has garnered significant research interest, exploring a 

spectrum of approaches from lightweight models to fractal-based descriptors and explainable AI. 

 

1.Lightweight and Ensemble Deep Learning Systems Siddiqi Javaid [1] introduced CovidLite, a compact 

CNN tailored for COVID-19 detection with minimal computational complexity. Similarly, Ali et al. [2] developed an ensemble 

of CNNs to enhance diagnosis robustness and manage class imbalance. Tur [7] proposed lightweight ensemble networks suitable 

for resource- limited settings. Subashini et al.[8] applied transfer learning ensembles to ensure cross-disease generalizability. 

2.Hybrid and Explainable Models Incorporating Fractal Features 

Hamal et al.[5] combined fractal dimension analysis with CNN features, demonstrating structural complexity provides 

complementary information to deep networks. Chakraborty et al.[4] emphasized the value of combining socio-clinical factors 

with imaging via multivariate fuzzy clustering. While Tamal et al. [3] integrated fuzzy logic with CNNs to increase interpretability 

in severity assessment, Arias‑Londoño et al. [6] focused on interpretable multi-modal ML for respiratory disease detection. 

3.Interpretability and Feature-Based Classical ML Habib Rahman [10] and Iqbal et al. [11] developed 

interpretable, feature-driven models (e.g., texture and statistical descriptors) for COVID‑19 and tuberculosis classification using 

chest X‑rays. Xue et al. [12] leveraged texture and fractal descriptors in a non-deep ML framework to classify lung disease 

patterns efficiently. 

4.Multimodal and Transfer Learning Enhancements Alahmari et al.[9] introduced a multimodal explainable 

system, integrating cough audio and X-ray data with human-understandable models . Ayyachamy[17] designed transfer-learning 

workflows tailored to COVID-19 detection from chest X‑rays. Kumar Bhowmik [18] optimized CNN architectures for improved 

speed and efficiency in CXR classification. Kibria et al. [19] used ensemble deep models with interpretability overlays for reliable 

COVID-19 detection. Pal et al. [13] and Liu et al. [20] contributed frameworks emphasizing transparency and generalization 

using interpretable features.\ 

 

In summary, the existing literature reveals a growing emphasis on lightweight, accurate and explainable models for chest X-ray–

based diagnosis of respiratory diseases. While deep learning and ensemble models achieve high accuracy, they often lack 

interpretability. Conversely, classical machine learning pipelines that rely on handcrafted features—including fractal dimension, 

entropy, and edge density—offer transparency but may compromise on performance. Our work bridges this gap by combining 

statistically validated handcrafted features with efficient machine learning classifiers, offering a low-cost, interpretable, and 

robust diagnostic framework suitable for resource-constrained clinical settings. 

 

MATERIALS AND METHODS 
This study proposes a low-cost hybrid diagnostic model for classifying chest X-ray images into three categories: Normal, 

pneumonia, and COVID-19. The detailed flow chart has been provided in Fig 1A. The methodology integrates fractal analysis, 

statistical features, and traditional machine learning to achieve an interpretable and effective classification. The major steps of 

the proposed methodology are described in the following. 

 
Fig 1A: Flow chart of the diagnosis of X-Ray images using Machine Learning approach. 
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A. Image Acquisition and Preprocessing 

A chest X-ray image I serves as the system's input. Subsequent pre-processing operations are implemented to ensure the accuracy 

and quality of the input data. 

• The image I is transformed into greyscale, if it is not already in that format. 

• The greyscale image is scaled to a standardized resolution of 256 × 256 pixels. 

• In order to emphasise anatomical details and improve contrast, histogram equalisation is implemented. 

  

• A global thresholding technique, such as Otsu's method, is employed to transform the greyscale image into a binary 

image B. 

 

B. Fractal Dimension Estimation using Box Counting 

Method 

The box-counting method is employed to estimate the Fractal Dimension (FD). The complexity of structures within the binary 

image $B$ is quantified in this phase. 

1. Choose a predetermined assortment of box sizes 𝑆 = {𝑠1, 𝑠2, … 𝑠𝑛} 

2. For each box size 𝑠𝑖 ∈ 𝑆 

• Partition the binary image B into non- overlapping boxes with specified dimensions 𝑠𝑖 × 𝑠𝑖. 
• Determine the quantity of boxes N(𝑠𝑖) that encompass a minimum of one 

foreground pixel. 

3. For each log(N (𝑠𝑖)) versus log(1/(𝑠𝑖)) for all values of (𝑠𝑖). 
4. Estimate the slope of the fitted line by 

performing linear regression. The fractal dimension D is determined by the negative of this inclination. 

 

C. Feature Extraction 

Two more features are extracted to augment the model’s 

discriminating power: 

• Shannon Entropy (E): Assesses the unpredictability or informational content of the greyscale image. It is characterised 

as: 

255 

𝐸 = − ∑ 𝑝𝑖 log2 𝑝𝑖 
𝑖=0 

where pi represents the normalized histogram 

value of pixel intensity i. 

 

• Edge Density (ED): Reflects the structural variance within the image. It is computed as: 

1. To get an edge map, use an edge recognition filter, such as the Sobel operator. 

2. Enumerate the edge pixels above a threshold T . 

3. Compute 

𝑁𝑜 𝑜𝑓 𝐸𝑑𝑔𝑒 𝑃𝑖𝑥𝑒𝑙𝑠 

𝐸𝐷 = 

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜 𝑜𝑓 𝑃𝑖𝑥𝑒𝑙𝑠 

The conclusive feature vector for each image is delineated as: 

𝐹 = [𝐷, 𝐸, 𝐸𝐷] 

 

D. Classification using Machine Learning 

A classic, inexpensive, interpretable classifier like Decision Tree, Support Vector Machine (SVM), or k- Nearest Neighbors (k-

NN) is given the retrieved feature vector F. A dataset of chest X-rays that have been labelled 

  

as Normal, Pneumonia, or COVID-19 is used to train the classifier. 

Here are the steps involved in the categorization process: 

• Training Phase: 

1. Divide the dataset into training and test sets. 

2. Utilize the feature vectors F together with their associated class labels to train the classifier. 

• Testing/Inference Phase: 

3. Utilize the identical preprocessing approach to extract characteristics from novel chest X-ray images. 

4. Utilize the trained classifier to predict the class label. 

E. Evaluation Metrics 

The classifier’s performance is assessed using conventional measures. 

• Accuracy 

• Precision 

• Recall 

• F1-Score 

• Confusion Matrix 

Cross-validation, such as 5-fold or 10-fold, can be utilized to evaluate generalizability and reduce overfitting. 

 

F. Datasets Used 
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The “Chest X-ray (COVID-19 & Pneumonia)” dataset by 

\cite{29} comprises 6,432 chest X-ray images classified into three categories: COVID-19, Pneumonia, and Normal (healthy). 

The photos are categorised into training and testing directories, each comprising distinct subfolders for the three classes, rendering 

them appropriate for immediate application in machine learning and deep learning processes. This dataset is designed for the 

construction and assessment of diagnostic models that categorise COVID-19 cases in comparison to other pneumonia infections 

and healthy individuals. It functions as a significant resource for medical picture analysis, AI- driven diagnostics, and educational 

applications. Nevertheless, it lacks supplementary material, including patient demographics and imaging conditions, rendering it 

more appropriate for image-based classification tasks than for comprehensive clinical research. 

 

This technology offers an efficient, interpretable, and economical diagnostic pipeline by utilising fractal geometry, statistical 

image analysis, and conventional classifiers. It circumvents the computational intricacies of deep learning or fuzzy systems while 

preserving robust performance, rendering it suitable for implementation in resource-constrained environments. 

 

RESULT AND DISCUSSION 
This study's feature-based analysis offers significant insights  into  the  possible  application  of  statistical descriptors—

specifically fractal dimension, entropy, and edge density—to distinguish between Normal, Pneumonia, and COVID-19 cases in 

chest X-ray images. This discourse elucidates the interpretability and discriminatory power of each feature, as well as the 

correlations identified among them, employing diverse visualization and statistical methodologies. 

 

The fractal dimension, which quantifies geometric complexity or self-similarity in image patterns, exhibits significant potential 

in differentiating normal from pathological situations (i.e., pneumonia and COVID-19) [21,22]. The pair plot and corresponding 

distribution curves indicate that both the COVID and Pneumonia classes display elevated fractal dimension values concentrated 

between around 1.7 and 2.0. Conversely, the Normal class exhibits a more condensed distribution with comparatively lower  

fractal dimension values, indicating reduced structural irregularity in healthy lung tissue. This signifies that fractal complexity 

escalates in infected lungs as a result of textural disturbances. The resemblance in distributions between COVID and Pneumonia 

suggests that, although fractal dimension is proficient in identifying Normal instances, it may not be adequate by itself to 

consistently differentiate between the two illnesses. This constraint highlights the need for utilising fuzzy logic or non-linear 

decision limits to attain greater classification precision. 

 

Moving to entropy, which quantifies the randomness or information content in an image, the classes display overlapping yet 

distinguishable characteristics [23,24,25]. COVID cases are marked by a broader spread in entropy values, signifying more 

diverse texture complexity possibly due to heterogeneous lesion appearances. Normal cases cluster around moderate entropy 

values, reflecting the relative uniformity of healthy lung tissue. Pneumonia shares some overlap with both classes but tends to 

lean toward COVID in terms of variability. Although entropy alone may not provide sharp decision boundaries, it augments class 

separability when combined with fractal dimension. This synergy suggests the presence of complementary information carried 

by the two features, reinforcing the argument for multivariate modeling over single-feature reliance. 

 

 
Fig. 1. Pairplot diagram of extracted features (Fractal Dimension, Entropy, and Edge Density) across the three classes: 

Normal, Pneumonia, and COVID-19. 

 

Edge density, calculated by methods such as Canny edge detection, reveals an additional aspect of differentiation [26,27,28]. The 

investigation indicates that Normal cases have greater edge density, presumably owing to the distinct delineation of anatomical 

components in healthy lungs. Conversely, COVID examples exhibit a closely grouped low edge density, likely due to extensive 

opacification obscuring distinct edge borders. Pneumonia cases are generally situated between extremes, however in certain 

instances, they tend to align more closely with the Normal range. This stratification pattern indicates that edge density is very 

proficient in distinguishing COVID instances from Normal cases. The distinct separation between these classes in the distribution 

plot suggests that edge density, in conjunction with fractal dimension and entropy, can enhance the robustness of classification 

http://www.verjournal.com/


 
VASCULAR & ENDOVASCULAR REVIEW 

www.VERjournal.com 

 

 

Cost-Effective and Transparent Diagnosis of COVID-19 and Pneumonia using X-ray Images: A Machine Learning Approach 

124 

 

systems. 

 

The pairwise scatter plots presented in Fig. 1 reinforce these conclusions by illustrating the interactions of attributes across classes. 

In the Fractal Dimension against Edge Density plot, COVID instances are clearly situated in regions of high fractal dimension 

and low edge density, while Normal cases are found in areas of medium-to-high edge density with marginally lower fractal 

dimension values. Pneumonia intersects with both categories, signifying its intermediate characteristic behaviour. This plot is 

particularly effective for delineating linear or non- linear decision boundaries that can distinguish COVID from Normal, despite 

some residual uncertainty between COVID and Pneumonia. The Entropy vs Fractal Dimension scatter plot exhibits class-specific 

diagonal trend lines, indicating distinct patterns of structural complexity and textural information for each illness category. 

 
Fig. 2. Box plot diagram of extracted features (Fractal Dimension, Entropy, and Edge Density) across Normal, 

Pneumonia, and COVID-19 classes. 

 

Fig. 3 presents a correlation matrix that elucidates the interrelationship among the three derived features: Fractal Dimension, 

Entropy, and Edge Density. The heatmap demonstrates that Fractal Dimension exhibits minimal correlations with both Entropy 

(0.18) and Edge Density (0.13), indicating that it reflects distinct structural or geometric complexity in chest X-ray images, largely 

independent of texture randomness or edge characteristics. The independence of fractal dimension renders it a particularly 

valuable attribute, as it provides non- redundant information to the classification model 

 
Fig. 3. Correlation heatmap of extracted features (Fractal Dimension, Entropy, and Edge Density) 

 

Conversely, Entropy and Edge Density demonstrate a moderate positive correlation of 0.47, suggesting a degree of shared 

information between these two metrics. This may result from places exhibiting more texture complexity (higher entropy) 

frequently generating more edges during edge detection, particularly in instances such as Pneumonia when uneven textures are 

evident. 

 
Fig. 4. Receiver Operating Characteristic (ROC) curves for the multi- class classification task (Normal, Pneumonia, 
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COVID-19). 

 

The low to moderate correlation scores indicate that all three aspects provide complementary insights into the X- ray data. The 

minimal redundancy among these features bolsters the argument for their utilisation in a multi-feature classification framework, 

wherein each feature contributes a unique layer of discriminatory power, resulting in a more robust and generalisable diagnostic 

model for differentiating between Normal, Pneumonia, and COVID- 19 chest X-ray images. 

 

The ANOVA (Analysis of Variance) results offer a statistical basis for evaluating whether the mean values of the retrieved 

features—Fractal Dimension, Entropy, and Edge Density—significantly differ across the three diagnostic categories: Normal, 

Pneumonia, and COVID- 19. 

 

The ANOVA test for Fractal Dimension produces an F- statistic of 5.4524 and a p-value of 0.0044. This signifies a statistically 

significant difference across the groups at the 0.01 level, however with a reduced F-statistic relative to the other features. This 

outcome substantiates that fractal complexity differs between illness states, especially between normal and pathological 

categories, while COVID and pneumonia may display some overlap. Detailed ANOVA analysis is shown in below  

 

ANOVA Results --- 

FractalDimension: F-statistic = 5.4524, p-value = 0.0044 

Entropy: F-statistic = 65.2953, p-value = 0.0000 EdgeDensity: F-statistic = 326.8575, p-value = 0.0000 

 

Entropy demonstrates a far greater distinction, evidenced by an F-statistic of 65.2953 and a p-value nearing zero. The pronounced 

statistical significance indicates that the textural randomisation of chest X-rays is markedly different among the three categories. 

COVID instances exhibit greater entropy values, but Normal and Pneumonia cases are more closely clustered yet remain 

distinct—underscoring entropy's efficacy as a discriminator, particularly when combined with additional variables. 

  

The most significant group differentiation is shown in Edge Density, with an F-statistic of 326.8575 and an almost negligible p-

value. This outcome illustrates that edge-based information varies significantly among the classes. Conventional views often 

possess the greatest edge density owing to enhanced visibility of lung structures, whereas COVID images demonstrate markedly 

less edge density. Pneumonia images are generally positioned between categories, frequently resembling Normal in certain 

instances. 

These statistical findings are further visually confirmed through boxplots shown in Fig. 2, which clearly show non- overlapping 

or minimally overlapping interquartile ranges, especially for Edge Density and Entropy. The boxplots provide intuitive visual 

evidence that aligns well with the ANOVA statistics—supporting the conclusion that the extracted features are statistically 

significant and visually separable across the diagnostic categories. This dual evidence—statistical and visual—strengthens the 

credibility of using these features in a diagnostic pipeline, either individually or in combination, for effective discrimination of 

chest X-ray patterns related to COVID- 19 and Pneumonia. 

 

Table 1: Presents The Precision, Recall, F1-Score, And Support Values For Each Class (Covid, Normal, And 

Pneumonia) Obtained From The Machine Learning Classification Model. 

Class Precision Recall F1- 

Score 

Support 

COVID 0.67 0.43 0.53 23 

Normal 0.72 0.57 0.64 68 

Pneumonia 0.79 0.9 0.84 167 

Accuracy   0.77 258 

Macro Avg 0.73 0.64 0.67 258 

Weighted Avg 0.76 0.77 0.76 258 

 

Table :2 Presents The Distribution Of Correctly And Incorrectly Predicted Samples Across The Three Classes, Showing 

Class-Specific Performance And Misclassifications 
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The ANOVA statistical analysis, corroborated by the boxplots, demonstrates significant differences across the three categories—

Normal, Pneumonia, and COVID-19— concerning the variables Fractal Dimension, Entropy, and Edge Density. Among the 

variables, Edge Density demonstrates the most pronounced variation, with COVID-19 cases presenting the lowest values, 

presumably attributable to diffuse opacities in the lungs of infected individuals. The ANOVA F-statistic of 326.86 and a p- value 

of 0.0000 validate its substantial discriminative capability. Entropy emerges as a significant characteristic, with COVID-19 

pictures exhibiting greater variability and median values relative to Normal and Pneumonia cases, indicative of the anomalous 

intensity patterns in affected lungs. The Fractal Dimension, while exhibiting a more nuanced difference, yet demonstrates 

statistically significant variation (p-value = 0.0044), notably affected by outliers within the COVID group. These three parameters 

offer complementing insights, with Edge Density and Entropy proving particularly effective in distinguishing between the chest 

X-ray groups in the diagnostic model. 

 

The performance assessment of the multiclass classifier, illustrated by the ROC curve in Fig. 4 and classification metrics shown 

in TABLE 1 and TABLE 2, indicates favorable diagnostic potential. The model attained an overall accuracy of 77.13, 

demonstrating dependable distinction among COVID-19, normal, and pneumonia cases. The Area Under the Curve (AUC) results 

indicate robust discriminative efficacy among classes: COVID (0.84), Normal (0.87), and Pneumonia (0.82). The Pneumonia 

class demonstrated the greatest F1-score (0.84), bolstered by exceptional recall (0.90), indicating the model's efficacy in 

accurately recognising pneumonia patients. Conversely, COVID-19 instances exhibited a diminished recall (0.43), potentially 

because to a restricted sample size or feature overlap with other categories. The confusion matrix indicates that certain COVID 

patients were inaccurately categorised as Pneumonia, underscoring the difficulty in differentiating between the two due to 

analogous radiographic findings. Nevertheless, the macro and weighted averages (F1-scores of 0.67 and 0.76, respectively) 

indicate a well balanced performance, with opportunities for enhancement through feature extension or ensemble methods. 

  

Conclusion 
This paper suggested a hybrid interpretable diagnostic complexity, texture unpredictability, and edge Overall Accuracy: 0.77 

information, respectively. Statistical analysis via ANOVA validated significant disparities among the classes for each feature (p-

value < 0.005). Boxplots demonstrated distinct differentiation among the categories, validating the feature selection. The features 

were subsequently input into a Fuzzy Inference System (FIS), facilitating categorisation via expert-like reasoning amidst 

ambiguity. The model attained an overall accuracy of 77.13 percent, with F1- scores of 0.84 for Pneumonia, 0.64 for Normal, 

and 0.53 for COVID-19. Although Normal and Pneumonia were accurately categorised, COVID-19 exhibited overlap, especially 

with Pneumonia, as indicated by the confusion matrix. Multiclass ROC curves demonstrated satisfactory separability, with AUCs 

of 0.87 for Normal, 0.84 for COVID, and 0.82 for Pneumonia. Future endeavours will entail the integration of other features such 

as Haralick textures, Gabor responses, and spatial patterns to enhance COVID-19 discrimination. Incorporating fuzzy clustering 

or neuro-fuzzy systems may augment classification efficacy. The expansion to CT scans and real-time implementation in clinical 

environments is also anticipated. 
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