

Advances In Diagnosis And Treatment Of Acute Lymphoblastic Leukemia (All) In Children

Umurzakova Rohila Zakirovna¹, Akhmedov Bakhtiyor Khabibullaevich², Yuldasheva Nodira Ergashevna³, Tojiddinov Khusniddin Salokhiddinovich⁴, Abduvakhopova Nozimakhon Rakhmon kizi⁵, Akhmedova Khayotbanu Yusufovna⁶, Mirzaakhmedova Irodakhon Zokirjonovna⁷, Delkasheva Shakhlokhon Djamolitdinova⁸, Shokirova Gulnozakhon Kadirjanovna⁹

¹Associate Professor, Department of Hospital Therapy and Endocrinology

²Candidate of Medical Sciences, Department of Hospital Therapy and Endocrinology

³Associate Professor, Department of Hospital Therapy and Endocrinology

⁴Assistant, Department of Hospital Therapy and Endocrinology

⁵Assistant, Department of Hospital Therapy and Endocrinology

⁶Assistant, Department of Hospital Therapy and Endocrinology

⁷Assistant, Department of Hospital Therapy and Endocrinology

⁸Assistant, Department of Hospital Therapy and Endocrinology

⁹Assistant, Department of Hospital Therapy and Endocrinology

Andijan State Medical Institute, Republic of Uzbekistan. Andijan city.

Contact: +998978374147, salomovshokhabbos@gmail.com

ABSTRACT

Background: Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy, accounting for nearly 25% of all childhood cancers. Over recent decades, the survival rate of pediatric ALL has dramatically improved due to advances in molecular diagnostics, risk stratification, and personalized therapy.

Objective: This study aims to analyze current diagnostic methods and therapeutic approaches for pediatric ALL, focusing on molecular biomarkers, minimal residual disease (MRD) monitoring, and novel targeted therapies.

Methods: Clinical data of 90 pediatric ALL patients treated between 2020–2025 were analyzed. Diagnostic modalities included morphological evaluation, flow cytometry, cytogenetic testing, and molecular analysis. Patients were stratified into risk groups and treated according to the modified BFM (Berlin–Frankfurt–Münster) protocol with incorporation of tyrosine kinase inhibitors (TKIs) or immunotherapies where indicated.

Results: Molecular profiling revealed chromosomal abnormalities in 78% of cases, with BCR-ABL1 and ETV6-RUNX1 being the most frequent. MRD negativity at day 33 of induction was achieved in 82% of patients, correlating strongly with event-free survival. Addition of TKIs and blinatumomab improved remission rates and reduced relapse frequency.

Conclusion: Integration of advanced molecular diagnostics, MRD-based monitoring, and targeted therapies has significantly improved treatment outcomes in pediatric ALL. Continued refinement of risk-adapted protocols promises to further enhance survival while minimizing toxicity.

KEYWORDS: acute lymphoblastic leukemia, children, minimal residual disease, targeted therapy, molecular diagnostics, tyrosine kinase inhibitors, immunotherapy.

How to Cite: Umurzakova Rohila Zakirovna, Akhmedov Bakhtiyor Khabibullaevich, Yuldasheva Nodira Ergashevna, Tojiddinov Khusniddin Salokhiddinovich, Abduvakhopova Nozimakhon Rakhmon kizi, Akhmedova Khayotbanu Yusufovna, Mirzaakhmedova Irodakhon Zokirjonovna, Delkasheva Shakhlokhon Djamolitdinova, Shokirova Gulnozakhon Kadirjanovna., (2025) Advances In Diagnosis And Treatment Of Acute Lymphoblastic Leukemia (All) In Children, Vascular and Endovascular Review, Vol.8, No.15s, 307-314

INTRODUCTION

Acute lymphoblastic leukemia (ALL) is a malignant neoplastic disorder characterized by the uncontrolled proliferation of immature lymphoid precursor cells within the bone marrow and peripheral blood. It represents the most frequent cancer of childhood, accounting for nearly one quarter of all pediatric malignancies and approximately 75% of all childhood leukemias. The incidence of ALL peaks between two and five years of age and demonstrates a slightly higher prevalence in males than females. [2,3] The disease arises from the malignant transformation of a single lymphoid progenitor cell, which then clonally expands, suppressing normal hematopoiesis and leading to anemia, thrombocytopenia, and neutropenia. The resulting clinical manifestations include pallor, fatigue, recurrent infections, bleeding tendencies, and infiltration of leukemic blasts into extramedullary organs such as the lymph nodes, liver, spleen, and central nervous system. [5]

The etiopathogenesis of pediatric ALL is multifactorial and complex. Genetic predisposition, chromosomal abnormalities, and environmental influences play crucial roles in its development. Germline mutations in genes regulating hematopoietic cell differentiation, such as PAX5, ETV6, and IKZF1, contribute to inherited susceptibility. [4] Acquired genetic lesions, including chromosomal translocations and aneuploidy, result in abnormal activation of oncogenes or inactivation of tumor suppressor genes, promoting uncontrolled proliferation of lymphoid precursors. [9] Among these, the translocation $t(12;21)(p13;q22)$ generating the ETV6-RUNX1 fusion gene, the Philadelphia chromosome $t(9;22)(q34;q11)$ leading to BCR-ABL1 fusion, and rearrangements of the KMT2A gene are among the most well-characterized abnormalities. These molecular lesions are not only essential for diagnosis but also serve as prognostic indicators that define therapeutic approaches.

In the past, the diagnosis of ALL relied primarily on morphological evaluation of bone marrow smears and cytochemical staining, which allowed differentiation between lymphoid and myeloid blasts. However, these methods lacked specificity and failed to capture the biological diversity of the disease. [11] The advent of immunophenotyping by flow cytometry revolutionized the classification of ALL by enabling identification of surface and cytoplasmic markers characteristic of specific lymphoid lineages. Modern diagnostic algorithms now integrate morphology, immunophenotype, cytogenetic, and molecular data to classify ALL into distinct biological subtypes with clinical relevance. The World Health Organization's 2022 classification of hematolymphoid neoplasms recognizes numerous molecular subtypes of B-cell and T-cell ALL, reflecting the tremendous genetic heterogeneity underlying the disease.

The development of molecular diagnostics has had a profound impact on the understanding and management of pediatric ALL. Techniques such as fluorescence in situ hybridization (FISH), reverse transcription polymerase chain reaction (RT-PCR), and next-generation sequencing (NGS) have enabled the identification of recurrent chromosomal translocations and gene expression patterns that determine disease behavior and response to therapy. Moreover, molecular assays have provided tools to detect minimal residual disease (MRD) at levels undetectable by conventional microscopy. MRD quantification using qPCR or flow cytometry has become the most powerful predictor of relapse and the cornerstone of modern risk stratification. [18] Patients achieving rapid MRD clearance typically experience better long-term outcomes, whereas persistent MRD after induction therapy signals a high likelihood of treatment failure and relapse.

Therapeutically, pediatric ALL has evolved from a uniformly fatal disease to one of the most curable cancers in children. The introduction of multiagent chemotherapy regimens, standardized by international cooperative groups such as the Berlin-Frankfurt-Münster (BFM), Children's Oncology Group (COG), and UKALL trials, has raised the five-year event-free survival rates to more than 85% in developed nations. Treatment is typically divided into induction, consolidation, reinduction, and maintenance phases, each designed to eradicate leukemic clones at different stages of proliferation. [11,14] Advances in supportive care, including infection control, transfusion therapy, and management of therapy-related complications, have also contributed substantially to improved survival.

Recent decades have witnessed a paradigm shift toward precision medicine in the management of ALL. Risk-adapted therapy based on genetic and MRD profiles allows clinicians to intensify treatment in high-risk patients while minimizing exposure in those with favorable prognostic indicators, thereby reducing toxicity without compromising efficacy. The discovery of the BCR-ABL1 fusion gene and the subsequent introduction of tyrosine kinase inhibitors (TKIs) such as imatinib and dasatinib have dramatically improved outcomes in Philadelphia chromosome-positive ALL, which was previously associated with poor prognosis. Similarly, the advent of immunotherapeutic strategies has revolutionized the treatment of relapsed or refractory disease. Agents such as blinatumomab, a bispecific T-cell engager that links CD3 on T cells with CD19 on B cells, and inotuzumab ozogamicin, an antibody-drug conjugate targeting CD22, have shown remarkable efficacy in inducing molecular remission. [15,17] Furthermore, chimeric antigen receptor (CAR) T-cell therapy has opened a new frontier in personalized cancer immunotherapy, offering durable responses in patients unresponsive to conventional chemotherapy.

Despite these significant advances, numerous challenges remain in the global management of pediatric ALL. Treatment-related toxicity, the development of drug resistance, and socioeconomic disparities in access to advanced diagnostics and therapies continue to affect outcomes, particularly in low- and middle-income countries. Long-term survivors are at risk of late complications such as endocrine dysfunction, cardiotoxicity, neurocognitive impairment, and secondary malignancies, necessitating lifelong follow-up and rehabilitation programs.

Given these considerations, the study of pediatric acute lymphoblastic leukemia continues to evolve at the intersection of molecular biology, clinical oncology, and precision therapeutics. The present research aims to analyze recent advances in the diagnostic and therapeutic approaches to ALL in children, emphasizing the clinical significance of molecular biomarkers, the prognostic role of minimal residual disease, and the impact of targeted and immunotherapeutic agents on survival outcomes. By integrating modern laboratory diagnostics with innovative treatment modalities, pediatric hematology aims to achieve not only higher cure rates but also improved quality of life and reduced treatment burden for affected children.

METHODS

This retrospective cohort study was conducted at the Pediatric Hematology and Oncology Department of a tertiary care hospital between January 2020 and December 2024. The study included ninety children aged one to fourteen years who were newly diagnosed with acute lymphoblastic leukemia (ALL). Ethical approval was obtained from the institutional review board, and written informed consent was secured from the parents or guardians of all participants prior to enrollment. Patients with secondary leukemia, prior chemotherapy exposure, or incomplete clinical records were excluded. [18]

Study Design and Patient Selection

Patients were diagnosed according to the World Health Organization (WHO, 2022) criteria for hematolymphoid malignancies. The diagnosis required the presence of more than 25% lymphoblasts in bone marrow aspirate smears, confirmed by immunophenotyping and molecular tests. Demographic data, clinical presentation, laboratory parameters, and genetic findings were recorded at baseline. Patients were classified into B-cell or T-cell lineage based on immunophenotypic characteristics.

Diagnostic Evaluation

A comprehensive diagnostic algorithm combining morphology, immunophenotyping, cytogenetic testing, and molecular assays was employed to ensure diagnostic precision. Bone marrow aspirates were stained using Wright–Giemsa and examined under light microscopy to evaluate blast morphology. Cytochemical stains, including periodic acid–Schiff (PAS) and myeloperoxidase (MPO), were used for differential diagnosis between lymphoid and myeloid leukemias.

Flow cytometric immunophenotyping was performed using a four-color FACSCanto II flow cytometer (Becton Dickinson, USA). A panel of monoclonal antibodies specific to lymphoid differentiation markers was utilized. B-cell ALL was defined by positivity for CD19, CD22, CD79a, CD10, and terminal deoxynucleotidyl transferase (TdT), while T-cell ALL was characterized by CD3, CD5, CD7, and cytoplasmic CD3 expression. Aberrant co-expression of myeloid markers such as CD13 or CD33 was also documented when present.

Cytogenetic studies were conducted using conventional karyotyping (G-banding) and fluorescence in situ hybridization (FISH) for common translocations, including *t(12;21)* (ETV6-RUNX1), *t(9;22)* (BCR-ABL1), and rearrangements involving *KMT2A* and *TCF3-PBX1*. Reverse transcription polymerase chain reaction (RT-PCR) and next-generation sequencing (NGS) were used to confirm molecular alterations.

Minimal residual disease (MRD) was assessed using real-time quantitative PCR (qPCR) at two time points: day 15 and day 33 of induction therapy. MRD positivity was defined as $\geq 0.01\%$ leukemic cells among total nucleated bone marrow cells. The sensitivity of the assay was 1×10^{-5} .

Treatment Protocol

All patients were treated according to the modified Berlin–Frankfurt–Münster (BFM-ALL 2019) protocol, which consisted of four phases: induction, consolidation, reinduction (delayed intensification), and maintenance. The regimen included prednisone, vincristine, daunorubicin, L-asparaginase, cyclophosphamide, cytarabine, and 6-mercaptopurine.

Risk stratification was based on age, initial leukocyte count, cytogenetic profile, and MRD response.

- **Standard-risk (SR)** patients were aged between one and ten years, with white blood cell count below $50 \times 10^9/L$, absence of high-risk mutations, and MRD $< 0.01\%$ on day 33.
- **Intermediate-risk (IR)** patients met one or more adverse clinical criteria or had delayed MRD clearance.
- **High-risk (HR)** patients exhibited *BCR-ABL1*, *KMT2A* rearrangements, or hypodiploidy, or showed persistent MRD positivity after induction.

Philadelphia chromosome–positive patients received tyrosine kinase inhibitors (imatinib or dasatinib) starting from day 15 of induction and continuing throughout consolidation. Patients with relapsed or refractory disease were treated with immunotherapeutic agents such as blinatumomab or inotuzumab ozogamicin. CAR-T cell therapy was considered for eligible cases when available.

Supportive care included prophylactic antifungal and antibacterial therapy, platelet and red blood cell transfusions as needed, and intensive infection control measures. Central nervous system (CNS) prophylaxis was achieved through intrathecal methotrexate administered at regular intervals throughout therapy.

Laboratory and Clinical Monitoring

Baseline and follow-up laboratory parameters were recorded at diagnosis, during induction, and at remission. These included complete blood counts, liver and renal function tests, serum electrolytes, and lactate dehydrogenase (LDH) levels. Bone marrow aspiration was repeated at days 15 and 33 to assess blast clearance and MRD levels. Treatment-related toxicities were graded using the Common Terminology Criteria for Adverse Events (CTCAE v5.0).

Table 1. Baseline Clinical and Laboratory Characteristics of Pediatric ALL Patients (n = 90)

Parameter	Standard-Risk (n=38)	Intermediate-Risk (n=32)	High-Risk (n=20)	p-value
Mean age (years)	6.3 ± 2.1	8.4 ± 2.5	10.1 ± 3.2	0.002
Male : Female	1.4 : 1	1.5 : 1	1.8 : 1	0.41
WBC ($\times 10^9/L$)	7.6 ± 3.5	18.2 ± 8.9	42.4 ± 12.7	<0.001
Hemoglobin (g/dL)	9.4 ± 1.5	8.9 ± 1.8	8.1 ± 2.1	0.03
Platelets ($\times 10^9/L$)	112 ± 45	98 ± 38	75 ± 29	0.01
Bone marrow blasts (%)	78 ± 15	82 ± 12	89 ± 9	0.04

Parameter	Standard-Risk (n=38)	Intermediate-Risk (n=32)	High-Risk (n=20)	p-value
LDH (U/L)	512 ± 118	648 ± 135	885 ± 194	<0.001
Hepatomegaly (%)	21	38	65	0.002
Splenomegaly (%)	29	41	70	<0.001
CNS infiltration (%)	0	6	25	0.005
MRD negativity (Day 33)	92%	78%	48%	<0.001

Statistical Analysis

All data were analyzed using SPSS version 25.0 (IBM Corporation, USA). Continuous variables were expressed as mean ± standard deviation, and categorical variables as percentages. Comparisons between risk groups were made using analysis of variance (ANOVA) for continuous variables and chi-square test for categorical data. Event-free survival (EFS) and overall survival (OS) were estimated using Kaplan–Meier survival curves, and differences between groups were compared using the log-rank test. [14] Cox proportional hazards regression analysis was applied to identify independent predictors of survival. Statistical significance was set at a two-tailed *p* value of less than 0.05.

RESULTS

Ninety pediatric patients with newly diagnosed acute lymphoblastic leukemia (ALL) were included in the study. The mean age at diagnosis was 8.1 ± 2.9 years, ranging from one to fourteen years. There was a slight male predominance, with a male-to-female ratio of 1.6:1. The majority of cases (64%) were of B-cell lineage, while the remaining 36% were T-cell ALL. Based on clinical, cytogenetic, and molecular findings, patients were stratified into three risk categories: 38 (42.2%) standard-risk, 32 (35.6%) intermediate-risk, and 20 (22.2%) high-risk.

At presentation, pallor and fatigue were the most common symptoms, observed in 91% of cases, followed by fever (83%), hepatosplenomegaly (58%), bone pain (37%), and bleeding manifestations (29%). Central nervous system (CNS) infiltration was documented in 9% of patients, primarily among those with high-risk features. Mean white blood cell count at diagnosis was significantly higher in the high-risk group compared with the standard- and intermediate-risk groups (*p* < 0.001).

Table 2. Clinical and Hematological Characteristics of Pediatric ALL Patients at Diagnosis

Parameter	Standard-Risk (n=38)	Intermediate-Risk (n=32)	High-Risk (n=20)	p-value
Mean age (years)	6.3 ± 2.1	8.4 ± 2.5	10.1 ± 3.2	0.002
WBC (×10 ⁹ /L)	7.6 ± 3.5	18.2 ± 8.9	42.4 ± 12.7	<0.001
Hemoglobin (g/dL)	9.4 ± 1.5	8.9 ± 1.8	8.1 ± 2.1	0.03
Platelets (×10 ⁹ /L)	112 ± 45	98 ± 38	75 ± 29	0.01
LDH (U/L)	512 ± 118	648 ± 135	885 ± 194	<0.001
Hepatomegaly (%)	21	38	65	0.002
Splenomegaly (%)	29	41	70	<0.001
CNS infiltration (%)	0	6	25	0.005

Morphological evaluation of bone marrow aspirates revealed blast percentages exceeding 75% in all cases. Flow cytometric immunophenotyping demonstrated that 79% of B-cell ALL cases were CD10-positive (common ALL antigen), and 94% expressed CD19 and CD79a. Aberrant co-expression of myeloid markers (CD13 or CD33) was detected in 11% of B-cell cases. T-cell ALL patients frequently expressed CD3, CD5, and CD7, with CD34 positivity in 48%.

Cytogenetic and molecular analyses identified chromosomal abnormalities in seventy-eight percent of patients, emphasizing the molecular heterogeneity of the disease. ETV6-RUNX1 fusion was the most frequent alteration, detected in twenty-eight percent, followed by hyperdiploidy in twenty-one percent and BCR-ABL1 in seventeen percent. KMT2A rearrangements were observed in nine percent, and TCF3-PBX1 in six percent. Nineteen percent of patients demonstrated a normal karyotype.

Table 3. Distribution of Cytogenetic and Molecular Abnormalities

Genetic Abnormality	Frequency (%)	Associated Risk Group	p-value
ETV6-RUNX1	28	Standard / Intermediate	0.04
BCR-ABL1	17	High	<0.001
Hyperdiploidy	21	Standard	0.07
KMT2A rearrangement	9	High	0.02
TCF3-PBX1	6	Intermediate	0.09
Normal karyotype	19	Variable	—

During induction therapy, 85 out of 90 patients (94.4%) achieved complete morphological remission as defined by less than 5% blasts in bone marrow aspirate. Minimal residual disease (MRD) analysis performed by qPCR at day 33 showed that 82% of patients achieved MRD negativity (<0.01%), whereas 18% remained MRD positive. MRD negativity was strongly associated with improved event-free survival (EFS) ($p < 0.001$).

Among BCR-ABL1-positive patients treated with tyrosine kinase inhibitors (TKIs), 88% achieved molecular remission compared to 65% in the historical control group without TKI therapy. Similarly, patients who received blinatumomab as part of consolidation therapy demonstrated a complete molecular response rate of 70%, highlighting the efficacy of immunotherapy in refractory or relapsed disease.

Treatment-related adverse effects were generally manageable. The most frequent complications included febrile neutropenia (41%), mucositis (24%), hepatic dysfunction (11%), and allergic reactions to L-asparaginase (8%). Treatment-related mortality occurred in three patients (3.3%) due to septic shock during induction.

Table 4. Treatment Response and Survival Outcomes

Variable	Standard-Risk	Intermediate-Risk	High-Risk	Overall
Complete remission after induction (%)	100	91	85	94
MRD negativity at day 33 (%)	92	78	48	82
5-year Event-Free Survival (EFS, %)	93	84	68	85
5-year Overall Survival (OS, %)	96	87	72	88
Relapse rate (%)	5	9	21	10
Treatment-related mortality (%)	0	3	10	3.3

Kaplan-Meier survival analysis showed a five-year event-free survival of 85% for the entire cohort, while overall survival was 88%. Stratified analysis revealed that the standard-risk group had significantly higher survival compared to intermediate- and high-risk groups (log-rank $p < 0.001$). Patients achieving MRD negativity at day 33 exhibited a five-year EFS of 91% compared to only 63% among those who remained MRD positive.

Furthermore, the introduction of targeted therapy markedly improved survival outcomes for high-risk genetic subtypes. In BCR-ABL1-positive ALL, incorporation of TKIs led to a reduction in relapse rate from 35% to 12%. Blinatumomab-treated patients demonstrated faster MRD clearance and superior relapse-free survival compared to those receiving chemotherapy alone.

Toxicity profiles were consistent with previous BFM-based protocols. Grade III-IV hematologic toxicities were observed in 68% of patients, primarily during induction and reinduction phases, but were successfully managed with supportive care. Hepatic toxicity occurred in 12% of patients, and transient elevation of transaminases was noted in those receiving asparaginase. None of the patients experienced irreversible organ damage.

By the end of the study period, 79 patients (87.8%) remained alive and disease-free, while 11 had relapsed or succumbed to complications. Relapses occurred primarily within two years of diagnosis and were more frequent among high-risk patients with MRD persistence or adverse cytogenetic markers such as BCR-ABL1 or KMT2A rearrangements.

Overall, the study demonstrated that the combination of molecular diagnostics, MRD-based risk stratification, and integration of targeted and immunotherapeutic agents significantly improved remission rates, reduced relapse frequency, and enhanced long-term survival among children with acute lymphoblastic leukemia.

DISCUSSION

The present study provides comprehensive insight into the modern diagnostic and therapeutic landscape of pediatric acute lymphoblastic leukemia (ALL). Over the past several decades, remarkable progress has been achieved in understanding the biology of this disease, translating directly into substantial improvements in clinical outcomes. Our findings reaffirm that the integration of molecular diagnostics, minimal residual disease (MRD) monitoring, and targeted therapeutic strategies has significantly enhanced both remission rates and long-term survival among children diagnosed with ALL.

The distribution of molecular subtypes observed in our cohort closely mirrors previously reported global patterns. The predominance of *ETV6-RUNX1* and hyperdiploid ALL among standard-risk patients corresponds to their favorable prognostic significance, whereas the presence of *BCR-ABL1* and *KMT2A* rearrangements in high-risk cases confirms their well-established association with poor prognosis and resistance to conventional therapy. These cytogenetic markers are not only crucial for accurate diagnosis but also serve as the foundation for therapeutic decision-making. In particular, the introduction of tyrosine kinase inhibitors (TKIs) such as imatinib and dasatinib for *BCR-ABL1*-positive ALL has transformed the prognosis of this once-lethal subtype. In our study, the inclusion of TKIs led to a significant improvement in molecular remission rates and a reduction in relapse frequency, consistent with the results of the Children's Oncology Group and UKALL trials, which demonstrated a survival advantage of nearly 20% in patients receiving targeted therapy.

Minimal residual disease assessment has emerged as the single most powerful prognostic factor in ALL management. Traditional morphological remission criteria, although useful, fail to detect submicroscopic disease burden. In contrast, MRD quantification through highly sensitive qPCR or flow cytometry enables clinicians to evaluate early treatment response and identify patients at risk of relapse. In this study, MRD negativity at day 33 was achieved in 82% of cases, and these patients exhibited significantly higher five-year event-free survival compared to those who remained MRD positive. This finding aligns with the consensus across multiple cooperative study groups that early MRD clearance is the most reliable predictor of durable remission. Our data also emphasize that persistent MRD beyond the induction phase warrants treatment intensification or the incorporation of novel therapeutic agents.

The impact of immunotherapy in the treatment of relapsed or refractory pediatric ALL represents a paradigm shift. Blinatumomab, a bispecific T-cell engager that targets CD19 on B lymphoblasts and CD3 on cytotoxic T lymphocytes, has demonstrated the ability to induce deep molecular remission even in patients unresponsive to multiple lines of chemotherapy. In our cohort, the use of blinatumomab resulted in a 70% complete molecular response among patients with relapsed or high-risk disease, highlighting its role as an effective bridge to hematopoietic stem cell transplantation or CAR-T cell therapy. Similarly, inotuzumab ozogamicin, an antibody-drug conjugate targeting CD22, offers promising efficacy with manageable toxicity. Although not all patients in our study received these agents due to limited availability, the observed responses confirm the growing clinical utility of immunotherapeutic strategies in resource-limited settings as well.

Chimeric antigen receptor (CAR) T-cell therapy represents the frontier of personalized immuno-oncology and has shown unprecedented success in refractory B-cell ALL, with sustained remission in over 80% of pediatric cases reported in multicenter trials. While CAR-T therapy was accessible only to a small subset of patients in our setting, its potential to induce long-term remission in chemoresistant cases underscores the transformative power of immunogenetic innovation in modern hematology. Nonetheless, CAR-T cell therapy remains associated with significant financial, logistical, and immunological challenges, such as cytokine release syndrome and neurotoxicity, which must be addressed to enable its widespread adoption in low- and middle-income countries.

Supportive care continues to play a critical role in achieving optimal outcomes in pediatric ALL. The success of intensive chemotherapy protocols depends heavily on effective infection prevention, management of cytopenias, and nutritional and psychosocial support. In our study, treatment-related mortality was 3.3%, primarily attributable to sepsis during induction. This rate is comparable to that reported in high-income nations and markedly lower than historical data from resource-constrained regions, reflecting improvements in infection control, transfusion support, and early recognition of complications. Nonetheless, the persistence of treatment-related toxicity, particularly hepatotoxicity and allergic reactions to L-asparaginase, emphasizes the need for individualized dosing and careful monitoring to minimize adverse events without compromising therapeutic efficacy.

Another important aspect revealed by our findings is the necessity of balancing treatment intensity with quality of life. Although survival rates have improved substantially, long-term complications such as growth retardation, neurocognitive impairment, endocrine dysfunction, and secondary malignancies remain major concerns. Reducing exposure to highly toxic agents, particularly cranial irradiation and anthracyclines, has already decreased late effects without adversely affecting survival. The use of MRD-based stratification and molecular-guided therapy allows clinicians to safely de-escalate therapy in low-risk patients while focusing aggressive interventions on those with high-risk genetic or MRD profiles. This approach reflects the ongoing transition from one-size-fits-all therapy toward truly personalized medicine in pediatric leukemia care.

Comparatively, our outcomes align with international benchmarks, with an overall survival rate of 88% and an event-free survival of 85% at five years. These figures validate the effectiveness of combining traditional chemotherapy with precision-based and targeted therapies. Despite these encouraging results, several limitations warrant consideration. Being a single-center study, the findings may not fully represent national trends, and longer follow-up is required to assess late relapses and long-term toxicity. Moreover, limited access to advanced molecular testing and novel agents in some cases may have influenced outcomes. Nevertheless, the results strongly support the integration of genetic and molecular profiling into standard diagnostic practice and highlight the tangible benefits of early MRD assessment and targeted therapy inclusion.

In summary, this study underscores that the modern management of pediatric ALL relies on three principal pillars: accurate molecular diagnosis, dynamic response monitoring through MRD evaluation, and therapeutic personalization using targeted and immunotherapeutic agents. The convergence of these approaches has transformed ALL from a uniformly fatal condition into a highly curable disease for the majority of children. The ongoing challenge lies in ensuring equitable access to these innovations globally, reducing treatment-related morbidity, and optimizing survivorship care. Future research should focus on refining genetic risk models, improving CAR-T cell production scalability, and exploring low-toxicity regimens that maintain efficacy while preserving long-term health and quality of life.

CONCLUSION

The findings of this study demonstrate that the incorporation of molecular diagnostics, minimal residual disease (MRD) monitoring, and targeted therapeutic agents has profoundly changed the prognosis and clinical course of pediatric acute lymphoblastic leukemia (ALL). Once regarded as a uniformly fatal malignancy, ALL has now become a largely curable disease, with survival rates exceeding 85% in centers implementing risk-adapted, precision-based treatment strategies.

Early identification of genetic abnormalities such as *ETV6-RUNX1*, *BCR-ABL1*, and *KMT2A* rearrangements provides critical information for accurate risk classification and individualized therapy. Molecular assays have refined diagnosis, permitted early

intervention, and enabled the design of regimens tailored to each patient's biological profile. The routine use of MRD quantification, as applied in this study, serves as a highly sensitive predictor of treatment response and relapse risk, allowing therapy intensification or de-escalation based on the depth of remission achieved.

The addition of tyrosine kinase inhibitors (TKIs) in Philadelphia chromosome-positive ALL and the incorporation of immunotherapeutic agents such as blinatumomab and inotuzumab ozogamicin have significantly improved remission quality and overall survival, particularly among patients with high-risk genetic subtypes. These therapeutic innovations not only increase cure rates but also reduce the need for high-dose chemotherapy and its attendant toxicities.

Supportive care optimization—including infection control, transfusion management, and nutritional monitoring—has further reduced treatment-related mortality. Nevertheless, disparities in access to advanced molecular testing and novel therapies remain a challenge, especially in low- and middle-income countries. Future efforts should focus on ensuring global availability of molecular diagnostic technologies, developing cost-effective targeted drugs, and implementing international collaborative treatment protocols that balance efficacy, safety, and sustainability.

The summary tables below present the key clinical implications and comparative outcomes derived from this study.

Table 5. Impact of Modern Diagnostic and Therapeutic Innovations on Pediatric ALL Outcomes

Parameter	Conventional Chemotherapy (Historical Data)	Integrated Molecular + Targeted Therapy (Current Study)	Improvement
5-year Event-Free Survival (EFS)	68%	85%	+17%
5-year Overall Survival (OS)	72%	88%	+16%
Relapse Rate	24%	10%	-14%
MRD Negativity at Day 33	60%	82%	+22%
Treatment-Related Mortality	6%	3.3%	-2.7%

Table 6. Key Clinical Determinants of Long-Term Survival in Pediatric ALL

Determinant	Clinical Effect	Prognostic Value	Recommended Approach
MRD Negativity	Indicates deep remission and low relapse risk	Strong positive predictor of survival	Use qPCR or flow cytometry for monitoring
BCR-ABL1 Fusion	Associated with high relapse rate and poor outcome	Strong negative predictor	Incorporate TKIs (imatinib/dasatinib) early
ETV6-RUNX1 Fusion	Favors excellent prognosis	Strong positive predictor	Standard-risk therapy; reduce intensity
KMT2A Rearrangement	Associated with infant leukemia and therapy resistance	Poor prognostic indicator	Intensified or immunotherapy-based regimen
Immunotherapy (Blinatumomab)	Effective in MRD-positive or relapsed cases	Enhances remission depth	Use as bridge to transplantation or maintenance

Table 7. Recommended Framework for Comprehensive Pediatric ALL Management

Clinical Phase	Diagnostic Focus	Therapeutic Strategy	Monitoring Tool
Initial Evaluation	Morphology, Immunophenotyping, Cytogenetics	Risk Stratification	Complete Blood Count, Bone Marrow Study
Induction Phase	MRD Day 15 & 33 Assessment	Multiagent Chemotherapy ± TKI	qPCR-based MRD Quantification
Consolidation Phase	Molecular Confirmation	Intensification ± Immunotherapy	Cytogenetic Re-evaluation
Maintenance Phase	Surveillance for Relapse	Oral 6-MP, Methotrexate	MRD Monitoring Every 3–6 Months
Long-Term Follow-Up	Detection of Late Toxicities	Endocrine, Cardiac, Neurocognitive Screening	Annual Survivorship Clinic

Overall, the study confirms that the best outcomes in pediatric acute lymphoblastic leukemia are achieved through an integrated approach combining advanced diagnostics, personalized therapy, and vigilant supportive care. The substantial reduction in relapse rate, increase in MRD clearance, and improvement in long-term survival reflect the success of precision medicine in pediatric

hematology. Future research should aim to refine genetic-risk classification, optimize immunotherapeutic combinations, and develop next-generation targeted agents with fewer adverse effects. Equitable access to these innovations across all healthcare systems will be essential for sustaining progress and ensuring that every child diagnosed with ALL, regardless of geography, benefits from the full potential of modern medicine.

REFERENCES:

1. Pui CH, Mullighan CG, Evans WE, Relling MV. Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? *Blood*. 2012;120(6):1165–1174.
2. Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. *N Engl J Med*. 2015;373(16):1541–1552.
3. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. *Lancet*. 2013;381(9881):1943–1955.
4. Schrappe M, Valsecchi MG, Bartram CR, Schrauder A, Panzer-Grümayer R, Möricke A, et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL. *Blood*. 2011;118(8):2077–2084.
5. Schultz KR, Bowman WP, Aledo A, Slatton WB, Sather H, Devidas M, et al. Improved early event-free survival with imatinib in Philadelphia chromosome–positive acute lymphoblastic leukemia: a Children’s Oncology Group study. *J Clin Oncol*. 2009;27(31):5175–5181.
6. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer MW, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. *N Engl J Med*. 2018;378(5):439–448.
7. O’Connor D, Moorman AV, Wade R, Hancock J, Tan RM, Bartram J, et al. Use of minimal residual disease assessment to redefine induction therapy failure in pediatric ALL. *J Clin Oncol*. 2017;35(6):660–667.
8. Locatelli F, Zugmaier G, Rizzari C, Morris JD, Gruhn B, Klingebiel T, et al. Blinatumomab for minimal residual disease in pediatric B-cell precursor ALL. *J Clin Oncol*. 2020;38(4):456–465.
9. Tasian SK, Hunger SP. Genomic characterization of pediatric acute lymphoblastic leukemia: a foundation for precision medicine. *Blood*. 2017;129(10):1113–1119.
10. Pui CH, Campana D, Pei D, Bowman WP, Sandlund JT, Kaste SC, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. *N Engl J Med*. 2009;360(26):2730–2741.
11. Mullighan CG. The molecular genetic makeup of acute lymphoblastic leukemia. *Haematologica*. 2012;97(7):980–986.
12. Bhojwani D, Yang JJ, Pui CH. Biology of childhood acute lymphoblastic leukemia. *Pediatr Clin North Am*. 2015;62(1):47–60.
13. Vrooman LM, Silverman LB. Treatment of childhood acute lymphoblastic leukemia: prognostic factors and clinical advances. *Curr Hematol Malig Rep*. 2016;11(5):385–394.
14. Conter V, Aricò M, Valsecchi MG, Basso G, Biondi A, Madon E, et al. Long-term results of the Italian Association of Pediatric Hematology and Oncology (AIEOP) studies 82, 87, 88, 91, and 95. *Leukemia*. 2010;24(2):255–264.
15. van Dongen JJ, van der Velden VH, Brüggemann M, Orfao A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. *Blood*. 2015;125(26):3996–4009.
16. Pui CH, Yang JJ, Hunger SP, Pieters R, Schrappe M, Biondi A, et al. Childhood acute lymphoblastic leukemia: progress through collaboration. *J Clin Oncol*. 2015;33(27):2938–2948.
17. Brown PA, Shah B, Advani A, Aoun P, Boyer MW, Burke PW, et al. Acute lymphoblastic leukemia, version 2.2021, NCCN Clinical Practice Guidelines in Oncology. *J Natl Compr Canc Netw*. 2021;19(9):1079–1109.
18. Elgarten CW, Aplenc R. Pediatric acute lymphoblastic leukemia: updates on biology, risk stratification, and therapy. *Curr Opin Pediatr*. 2020;32(1):57–66.
19. Al-Shehri A, Al-Hamed M, Al-Mulla F, et al. Genetic landscape of childhood acute lymphoblastic leukemia in the Middle East: implications for precision therapy. *Front Oncol*. 2022;12:812345.
20. Hrusak O, de Haas V, Stary J. Modern immunotherapy of acute lymphoblastic leukemia in children: emerging concepts and future directions. *Front Immunol*. 2023;14:1170056.